欢迎来到天天文库
浏览记录
ID:29761578
大小:18.54 KB
页数:8页
时间:2018-12-23
《七年级苏科版数学教学计划》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划七年级苏科版数学教学计划 XX-XX学年度七年级数学教学计划 一、指导思想: 七年级数学是初中数学的重要组成部分,通过本学期的教学,要使学生学会适应日常生活,参加生产和进一步学习所必须的基础知识与基本技能,进一步培养运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质及初步的辩证唯物主义的观点。 二、情况分析: 本人本学期担任七年级班的数学教学工作。根据小学
2、升初中考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多,而且学习欠缺勤奋,学习的自觉性不高。 根据上述情况本期的工作重点将扭转学生的学习态度,培养学生的创新意识,激发学生学习数学的热情,抓优扶差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。 三、教材分析: 第一章我们与数学同行目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开
3、展,特制定安保从业人员的业务技能及个人素质的培训计划 1.经历对现实生活中具体事例的观察,感受生活中处处有数学,了解数学是人们交流信息的一种有效、简捷的手段,数学可以帮助人们更好地探求客观世界的规律. 2.利用现实的、有意义的、富有挑战性的问题,经历动手实践、自主探索与合作交流等活动,激发学生学习的积极性,并初步获得数学活动的经验. 第二章有理数 1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. 2.借助数轴理解绝对值和相反数的意义,会求有理数的绝对值与相反数. 3.理解乘方的意义,掌握有理数的加
4、、减、乘、除、乘方及简单的混合运算. 4.理解有理数的运算律,并能运用运算律简化运算. 5.能运用有理数的运算解决简单的问题. 6.能对含有较大数字的信息做出合理的解释和推断. 第三章代数式 1.在现实情境中进一步理解用字母表示数的意义. 2.能分析简单问题的数量关系,并用代数式表示. 3.能解释一些简单代数式的实际背景或几何意义. 4.会求代数式的值,能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业
5、水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 5.了解单项式、多项式、整式、单项式的系数、同类项等概念,会进行简单的整式加、减运算. 第四章一元一次方程 1.根据具体问题中的数量关系,经历建立方程模型、解方程和利用方程解决问题的过程,体会方程是刻画现实世界的有效的数学模型. 2.了解一元一次方程、方程的解等基本概念,会解一元一次方程,经历并体会解方程中的“转化”思想. 3.能以一元一次方程为工具解决一些简单的实际问题,
6、包括列方程、解方程,根据具体问题的实际意义,检验结果是否合理. 4.在经历建立方程模型解决实际问题的过程中,提高分析问题和解决问题的能力,并体会数学的应用价值. 第五章走进图形世界 1.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类. 2.通过在丰富的实例,进一步认识点、线、面及某些平面图形的一些简单性质. 3.会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体和实物原型. 4.了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型.目的-通过该培训员工可对保安行业有
7、初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 5.了解基本几何体与三视图、展开图之间的关系;通过典型实例,知道这种(转载于:写论文网:七年级苏科版数学教学计划)关系在现实生活中的应用. 6.观察与现实生活有关的图片,了解欣赏一些有趣的图形. 第六章平面图形的认识 1.通过丰富的实例,认识线段、射线、直线、角等简单的平面图形,了解平面上两条直线的平行与垂直关系.
8、2.能用符号表示线段、射线、直线、角以及互相平行、垂直的直线. 3.会进行线段、角的比较,能估计一个角的大小,会计算角度的和、差及进行角的单位的简单换算,了解线段的中点、角的平分线的概念. 4.了解余角、补角、对顶角,知道等角的余角相等、等角的补角相等、对顶
此文档下载收益归作者所有