2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3

2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3

ID:29696227

大小:48.00 KB

页数:4页

时间:2018-12-22

2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3_第1页
2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3_第2页
2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3_第3页
2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3_第4页
资源描述:

《2014届高考数学 2-1-3分层抽样配套训练 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.3 分层抽样双基达标 (限时20分钟)1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取几名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为(  ).A.10B.9C.8D.7解析 =,得x=10.答案 A2.为了保证分层抽样时每个个体等可能地被抽取,必须要求(  ).A.每层不等可能抽样B.每层抽取的个体数相等C.每层抽取的个体可以不一样多,但必须满足抽取ni=n(i=1,2,…,k)个个体.(其中k是层数,n是抽取的样本容量,Ni是第i层中个体的个数

2、,N是总体的容量)D.只要抽取的样本容量一定,每层抽取的个体数没有限制解析 A不正确.B中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B也不正确.C中对于第i层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C正确.D不正确.答案 C3.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为(  ).A.50B.60C.70D.80解析 由分层抽样方法得:×n=1

3、5.解得n=70.答案 C4.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.解析 应抽取的亩数分别为210×=7,120×=4,180×=6.答案 7,4,65.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.解析 由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为×100=20.答案 206.某市的3个区共有高中学生20000人,且3个区

4、的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.解 用分层抽样来抽取样本,步骤是:(1)分层:按区将20000名高中生分成三层;(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数法抽取样本;(4)综合每层抽样,组成样本.综合提高 (限时25分钟)7.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

5、(  ).A.9B.18C.27D.36解析 设老、中、青职工分别为x人,y人,z人,则解得由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.答案 B8.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.完成①②这两项调查采用的抽样方法依次为(  ).A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D

6、.简单随机抽样法、分层抽样法解析 在①中,销售情况差异较大,应采用分层抽样,在②中,由于个体数量不多,故采用简单随机抽样法.答案 B9.某学校有教师300人,其中高级教师90人,中级教师150人,初级教师60人,为了了解教师健康状况,从中抽取40人进行体检.用分层抽样方法抽取高级、中级、初级教师人数分别为________.解析 抽取比例为=,故分别抽取人数为90×=12,150×=20,60×=8.答案 12,20,810.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.

7、解析 设总体中的个体数为x,则=⇒x=120.答案 12011.在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本,分别用三种方法计算总体中每个个体被抽到的可能性.解 法一 简单随机抽样法:因为总体中的个体数N=120,样本容量n=20,故每个个体被抽到的可能性均为.法二 系统抽样法:将120个零件分组,k==6,即6个零件一组,每组取1个,显然每个个体被抽到的可能性均为.法三 分层抽样法:一、二、三级品的个数之比为2∶3∶5,20×=4,20×=6,20×=10,故分别从一、二、三级品中抽取4个、6个、10个,每个个体被抽到的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。