欢迎来到天天文库
浏览记录
ID:29685100
大小:173.00 KB
页数:3页
时间:2018-12-22
《2013届中考数学 知识点训练题39 几何》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、几何综合测验【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC=,BD=;四边形ABCD是梯形.(2)请写出
2、图a中所有的相似三角形(不含全等三角形).DCBAE图aEDCHFGBAPyx图10b(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.2、(09广东省)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设
3、BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过
4、△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?当x在何范围时,△PQW不为直角三角形?第3题图(2)ABCDFMNWPQ(3)问当x为何值时,线段MN最短?求此时MN的值。第3题图(1)ABMCFDNWPQ4、(08茂名市)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E
5、,连结AD、BD.(1)求证:∠ADB=∠E;(3分)(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3分)(3)当AB=5,BC=6时,求⊙O的半径.(4分)相关链接:若是一元二次方程的两根,则AxyBCO5、(08茂名市)如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、C(,0)三点,且-=5.3、求、的值;4、(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求
6、出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.6、(08梅州市)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:ADE∽BEF;(2)设正方形的边长为4,AE=,BF=.当取什么值时,有最大值?并求出这个最大值.7、(08梅州市)如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物
7、线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)8、(2008湛江市)如图所示,已知抛物线与轴交于A、B两点,与轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在轴上方的抛物线上是否存在一点M,过M作MG轴CPByA于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
此文档下载收益归作者所有