高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5

高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5

ID:29659242

大小:201.56 KB

页数:5页

时间:2018-12-21

高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5_第1页
高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5_第2页
高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5_第3页
高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5_第4页
高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5_第5页
资源描述:

《高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教a版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.2放缩法课后导练基础达标1设x>0,y>0,A=,B=,则A,B的大小关系是_________________.解析:A=<=B.答案:Alog4=,∴log5

2、4.答案:(1)<(2)<(3)<4已知a>b>c,则比较大小:_______.解析:∵a>b>c,∴a-b>0,b-c>0,.∴≤.答案:≤5求证:2<<+1.证明:=2,又<+1,∴2<+1.综合应用6已知a>b≥0,c>0,求证:.证明:.7求证:2(-1)<1+(n∈N*).证明:∵,∴1+又∴∴原不等式成立.8已知an=(n∈N*),求证:n,∴an=.又<[(n+1)+n]=(2n+1),∴an=∴.9求证:+(n∈N*).证明:,∴左式<[(1-)+(-)+…+()]=(1-)<.拓展探究10在△ABC中,求证:≤(a,b,c

3、为三边,A,B,C为弧度).证明:∵b+c>a,有a+b+c>2a,∴可知.同理,.∴.又∵(a-b)(A-B)≥0,便是aA+bB≥aB+bA,∴aA+bB+cC≥aB+bA+cC.同理,aA+bB+cC≥cA+aC+bB,aA+bB+cC≥cB+bC+aA.三式相加,得3(aA+bB+cC)≥π(a+b+c),即≥.∴原不等式成立.备选习题11设n∈N,且n>1,f(n)=1+++…+,求证:f(2n)>.证明:f(2n)=1+++…++…+=1++(+)+(12设三角形三边a,b,c满足关系an+bn=cn(n≥3,n∈N),求证:△ABC为锐角三角形.

4、证明:∵an+bn=cn,故()n+()n=1.∴c>a,c>b,△ABC中c边最长.又由于n≥3,1=()n+()n<()2+()2,∴a2+b2>c2,由余弦定理cosC=>0,△ABC为锐角三角形.13设a1,a2,a3,…,an是一组正数,求证:证明:,,∴14α≠(n∈Z),求证:(1+)(1+)≥(1+2n)2.证明:左式=1+++≥(1+2n)2(∵

5、sinα·cosα

6、≤).∴原不等式成立.15设0<α<,0<β<,0

7、)<2k·sin(-)≤sin(-),又∈(0,),-∈(0,),正弦函数在(0,)内单调递增,∴<-,即α+β<.16已知-1≤x≤1,n≥2,求证:(1-x)n+(1+x)n≤2n.证明:∵-1≤x≤1,设x=cos2θ,则1-x=1-cos2θ=1-(1-2sin2θ)=2sin2θ,1+x=2cos2θ.∴(1-x)n+(1+x)n=(2sin2θ)n+(2cos2θ)n=2n(sin2nθ+cos2nθ).考虑指数函数y=ax,当a∈(0,1)时,在x∈(0,+∞)上单调递减,∴sin2nθ≤sin2θ,cos2nθ≤cos2θ.∴2n(sin2nθ

8、+cos2nθ)≤2n(sin2θ+cos2θ)=2n.∴(1-x)n+(1+x)n≤2n.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。