高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)

高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)

ID:29649812

大小:600.06 KB

页数:12页

时间:2018-12-21

高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)_第1页
高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)_第2页
高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)_第3页
高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)_第4页
高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)_第5页
资源描述:

《高中数学 3.1.2 用二分法求方程的近似解教案 新人教a版必修1 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.2用二分法求方程的近似解教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解

2、,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点用二分法求方程的近似解.课时安排1课时教学过程导入新课思路1.(情景导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每50元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就

3、报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3500米)电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀

4、,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究提出问题①解方程2x-16=0.②解方程x2-x-2=0.③解方程x3-2x2-x+2=0.④解方程(x2-2)(x2-3x+2)=0.⑤我们知道,函数f(x)=lnx+2

5、x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间?⑦什么叫二分法?⑧试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.⑩思考用二分法求函数零点近似值的特点.讨论结果:①x=8.②x=-1,x=2.③x=-1,x=1,x=2.④x=,x=,x=1,x=2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在

6、的范围.〔“取中点”,一般地,我们把x=称为区间(a,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).⑧因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x1234

7、56789f(x)-4-1.3061.09863.38635.60947.79189.945912.079414.1972由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x0∈(2.5,3).同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75

8、)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53-1-2-5-0.009(2.53-1-2-5,2.5625)2.5468750.029(2.53-1-2-5,2.546875)2.53906250.010(2.53-1-2-5,2.5390625)2.535156250.001图3-1-2-1由于(2,3)(2.5,3)(2.5,2.75),所以零点所在的范围确实越来越小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。