高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)

高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)

ID:29647397

大小:1.03 MB

页数:4页

时间:2018-12-21

高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)_第1页
高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)_第2页
高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)_第3页
高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)_第4页
资源描述:

《高中数学 3.3.1《二元一次不等式表示的平面区域(1)》教案(苏教版必修5)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第5课时:§3.3.1二元一次不等式表示的平面区域(1)【三维目标】:一、知识与技能1.从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.能从实际情境中抽象出一些简单的二元线性规划问题,掌握简单的二元线性规划问题的解法,培养学生的数学应用意识和解决实际问题的能力;4.会用“选点法”确定二元一次不等式表示的平面区域.二、过程与方法1.本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。始终渗透“直线定界,特殊点定域”的思想,帮助学生用集合的观点和语言

2、来分析和描述结合图形的问题,使问题更清晰和准确。教学中也特别提醒学生注意(或)表示区域时不包括边界,而则包括边界2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;三、情感、态度与价值观1.通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。2.培养学生数形结合、化归、集合的数学思想【教学重点与难点】:重点:用二元一次不等式表示平面区域;难点:二元一次不等式表示的平面区域的确定,即如何确定不等式(或)表示的哪一侧区域【学法与教学用具】:1.学法:启发学生观察图象,循序渐进地理解掌握相关概念。以学生探究为主,老师点拨为辅。学生之间分组讨论,交

3、流心得,分享成果,进行思维碰撞。同时可借助计算机等媒体工具来进行演示。2.教学用具:直角板、投影仪(多媒体教室)【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1.情境:下表给出了三种食物的维生素含量及成本:维生素A(单位/kg)维生素B(单位/kg)成本(元)X3007005Y5001004Z3003003某人欲将这三种食物混合成100kg的食品,要使混合食品中至少含35000单位的维生素及40000单位的维生素,设X、Y这两种食物各取kg、kg,那么应满足怎样的关系?解答:∵X、Y这两种食物分别为kg、kg,∴食物为kg,则有,即

4、,又∵,∴(介绍二元一次不等式的概念),如果进一步要求如何取值时总成本最小呢?如何解决该问题.问题转化为在以上不等式组约束下,求(介绍目标函数概念)的最大值问题.要解决以上问题,我们首先要来了解二元一次不等式的几何意义.2.问题:坐标满足二元一次方程的点组成的图形是一条直线.怎样才能快速准确地画出直线呢?(学生答:描两点连成线.例如:该直线经过点和,画出经过两点的直线即为所求).教师问:怎样判断点在不在直线上呢?结论:点的坐标满足直线的方程,则点在直线上;点的坐标不满足直线方程,则点不在直线上.坐标满足不等式的点是否在直线上呢?这些点在哪儿呢?与直线的位置有什么

5、关系呢?二、研探新知通过代特殊点的方法检验满足不等式的点的位置,并猜想出结论:坐标满足不等式的点在直线的上方.如图,在直线上方任取一点,过作平行于轴的直线交直线于点,∵点在直线上方,∴点在点上方,∴,即,∵点为直线上方的任意一点,所以,直线上方任意点,都有,即;同理,对于直线左下方任意点,都有,即.又∵平面上任意一点不在直线上即在直线上方或直线下方.因此,满足不等式的点在直线的上方,我们称不等式表示的是直线上方的平面区域;同样,不等式表示的是直线下方的平面区域.学生练习:判断不等式表示的是直线上方还是下方的平面区域?(下方)下半平面上半平面结论:①一般地,在直角

6、坐标系中,二元一次不等式表示某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式表示区域时则包括边界,把边界画成实线.②一般地,直线把平面分成两个区域(如图):表示直线上方的平面区域;表示直线下方的平面区域.说明:(1)表示直线及直线上方的平面区域;表示直线及直线下方的平面区域.(2)对于不含边界的区域,要将边界画成虚线.三、质疑答辩,排难解惑,发展思维例1(教材例1)画出下列不等式所表示的平面区域:(1);(2).解:(1)(2)两个不等式所表示的平面区域如下图所示:例2判断下列不等式所表示的平面区域在相应直线的哪个区域?(用“上方”或“

7、下方”填空)(1)不等式表示直线的平面区域;(2)不等式表示直线的平面区域;(3)不等式表示直线的平面区域;(4)不等式表示直线的平面区域.说明:二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域.可以用“选点法”确定具体区域:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式.若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.例3(1)若点在直线下方区域,则实数的取值范围为.(2)若点在直线的上方区域,则点在此直线的下方还是上方区域?解:(1)∵直线下方的点的坐标满足,∴.(2)∵直线的上方区域的点的坐标

8、满足,∵点在直线的上方区

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。