(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版

(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版

ID:29644441

大小:181.00 KB

页数:7页

时间:2018-12-21

(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版_第1页
(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版_第2页
(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版_第3页
(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版_第4页
(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版_第5页
资源描述:

《(秋)九年级数学上册 第四章 锐角三角函数章末复习教案 (新版)湘教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章锐角三角函数教学目标【知识与技能】1.了解锐角三角函数的概念,熟记30°、45°、60°的正弦、余弦和正切的函数值.2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数.3.会用解直角三角形的有关知识解决简单的实际问题.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想.【情感态度】通过解直角三角形的学习,体会数学在解决实际问题中的作用.【教学重点】会用解直角三角形的有关知识解决简单的实际问题.【教学难点】会用解直角三角形的有关知识解决简单的实际问题.教学过程【布置作业】完成本课时对应练习,并提醒学生

2、预习下一节的内容。一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.正弦的概念:在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα,即:sinα=角α的对边/斜边.2.余弦的概念:在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cosα.即cosα=角α的邻边/斜边.3.正切的概念:在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的正切.记作tanα,即:tanα=角α的对边/角α的邻边4.特殊角的三角函数值:5.三角函数的概念:我们把锐角α的正弦、余弦、正切统称为角α的锐角

3、三角函数.6.解直角三角形的概念:在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.仰角、俯角的概念:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.8.坡度的概念:坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比);记作i,坡度通常用l∶m的形式;坡面与水平面的夹角叫作坡角,记作α.坡度越大,坡角越大,坡面就越陡.【教学说明】引导学生回忆本章所学的有关概念,知识点.加深学生的印象.三、运用新知,深化理解1.已知,如图,D是△ABC中BC边的中点,∠BAD=90°,tanB=2/3,求sin∠DAC.解:过

4、D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由tanB=2/3,得ADAB=2/3,设AD=2k,AB=3k,∵D是△ABC中BC边的中点,∴DE=3/2k∴在Rt△ADE中,AE=5/2k,2.计算:tan230°+cos230°-sin245°tan45°3.如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3/5,则下列结论正确的个数为()①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.A.1个B.2个C.3个D.4个分析:由菱形的周长为20cm知菱形边长是5cm.综上所述①②③正确.【答案】C4.如图所示,一艘轮船

5、位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).分析:由题意知,在△ABP中∠A=60°,∠B=45°,∠APB=75°联想到两个三角板拼成的三角形.因此很自然作PC⊥AB交AB于C.解:过点P作PC⊥AB,垂足为C,则∠APC=30°,∠BPC=45°,AP=80,∴当轮船位于灯塔P南偏东45°方向时,轮船与灯塔P的距离是40海里.【教学说明】通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认知水平,从而促进数学观点的形成和发展.

6、四、复习训练,巩固提高1.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.2C.3D.3分析:∵△ABC是等边三角形,点P是∠ABC的平分线上一点,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF·cos30°=2×/2=.∵FQ是BP的垂直平分线,∴BP=2BQ=2.在Rt△BEP中,∵∠EBP=30°,∴PE=1/2BP=.【答案】C2.如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达

7、D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:≈1.73)解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,在Rt△DEC中,∠DCE=30°,CD=100,∴x=50(3+)≈236.6.答:山AB的高度约为236.6米.3.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,3≈1.732).解:根据题意得:四边形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。