高中数学 1.1.2 余弦定理2教案 新人教a版必修5

高中数学 1.1.2 余弦定理2教案 新人教a版必修5

ID:29639464

大小:136.06 KB

页数:5页

时间:2018-12-21

高中数学 1.1.2 余弦定理2教案 新人教a版必修5_第1页
高中数学 1.1.2 余弦定理2教案 新人教a版必修5_第2页
高中数学 1.1.2 余弦定理2教案 新人教a版必修5_第3页
高中数学 1.1.2 余弦定理2教案 新人教a版必修5_第4页
高中数学 1.1.2 余弦定理2教案 新人教a版必修5_第5页
资源描述:

《高中数学 1.1.2 余弦定理2教案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《1.1.2余弦定理》教学设计一.教学内容分析本节课是一节公式定理课,内容是高中数学人教A版必修5第一章解三角形的第二节课,主要的教学内容有余弦定理的公式,余弦定理公式的简单应用。本节课是在学习了正弦定理知识之后,也就要求学生类比正弦定理的学习,学会公式的优化选择。二.目标与目标分析数学的公式定理课-------我们在平时教学中很容易把大量的花在公式定理的应用上,而忽略了让同学们参与公式的推导建构过程。这样的过程同学们在短时间上通过大量的训练会知道怎么用公式,却总是会迷茫为什么要这么用,为什么会选择这个公式,例如我就发现同

2、学们上高中后依旧很多同学不喜欢用求根公式,而是依旧用配方法,我想这也是在公式建构过程中,同学们没有参与推导的过程,就不知道如何解决公式的优化选择。导致学生还是无法接受新的知识。华罗庚说过,新的数学方法和概念,常常比解决数学问题本身更重要。而我们要回到原点看问题,才是学生能够更好的应用数学知识的基石。才能够用数学的思维去思考和解决问题。三.学生学习情况分析我们面对的是高一的学生,学生在学习数学的能力还处在比较稚嫩的阶段。不过他们刚学习完正弦定理的知识,知道正弦定理公式的推导是从直角三角形这个特殊三角形到一般三角形的推导,知道

3、正弦定理是应用时解三角形的边角关系,学生可以通过类比的方法来学习余弦定理。四.设计思想本节课是一节公式定理课,我设计的主线是:从生活实际出发,解决学这节课干嘛用,是为了解决生活问题的。通过特殊到一般的思想,把特殊问题一般化,让同学们寻找解决的途径,通过对比,寻找最优化方法,最终由同学们自己推导出公式,并自己观察寻找公式的简单应用。五.教学目标知识与技能::能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。过程与方法:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

4、情感态度价值观:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,让学生感受数学的美,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。六.教学重难点1.教学重点:余弦定理的证明过程和定理的简单应用。2.教学难点:余弦定理的公式推导及其简单应用中正余弦定理的选择。3.教学方法:启发讲授式与问题探究式.4.教具准备:多媒体七.教学过程教学过程环节教学设计(教师引导)设计意图学情预设一.复

5、习回顾,巩固铺垫1.正弦定理:问1:正弦定理主要解决哪些问题?答:(1)解三角形(SSA,AAS)(2)边角互化------(转化的思想)问2:正弦定理应用要注意什么?答:解的个数:检验-----“大边对大角”回顾上节课的学习内容,为余弦定理的学习做铺垫,回顾的不仅仅是知识内容,还有学习正弦定理的目的以及应用中的一些注意点。学生会知道正弦定理的知识内容,但会对解决哪些问题,无法完整的回答,或者说不知道怎么回答,老师要做适当的引导。二.创设情境,引入新课通过播放学生测量假山的视频引入新课问3:为了测量校园内假山两端点之间的距

6、离,之间被高高的假山挡着了,要怎么办?构建数学模型来解决问题问4:用正弦定理能否直接求出B,C两处的距离?答:不能问5:那要怎么办?答:(有的同学会想到)----------请同学起来分析一下(渗透未知的知识往已知的知识如何转化)通过实际生活问题,来激发学生学习的兴趣,找到学生知识的冲突点,一个问题旧知识解决不了,我们就寻找新的解决方案。学生会发现不能用上节课的正弦定理来解决这个问题,积极的思考要怎么处理这个问题,有的同学就会想到上节课正弦定理的证明就可以回归直角三角来解决。三.小组合作,分组探究探究点:如何由已知两边和它

7、们的夹角求三角形的另一边?问6:如何解决这已知三角形两边c和b,和两边的夹角A,求第三边a的问题?----------渗透特殊到一般的思想如图,在△ABC中,设BC=a,AC=b,AB=c.已知c,b和∠A,求边长a.问7:解决长度和角度问题的手段有什么?生:,向量,坐标老师通过问题串的方式引导知道解决长度和角度的方法有多种,自己去寻找公式的证明过程。感受公式推导形成的过程。这样才能够真正的理解定理的内涵。真正做到学生自己去发现问题,体现了“学生主体,老师主导”的课堂状态。学生会想到平面几何的证明方法,但是会思考的没有那么

8、全面,只想到锐角的证明过程,向量的方法会遇到寻找夹角的错误,坐标法中,学生对C点坐标会不知道如何表示。向量法中,夹角容易找错了。(当学生想到这些方法的时候可以问他们为什么会想到,例如,平面几何法---是回归我们初中就学习过的熟悉的知识,向量法--是因为有边角有关的公式,或者说有个有三角形有关的加法原则,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。