欢迎来到天天文库
浏览记录
ID:29629763
大小:340.56 KB
页数:7页
时间:2018-12-21
《高中数学 3.1.1两角和与差的余弦公式教学设计 新人教b版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、两角和与差的余弦公式教学设计【教学三维目标】1.知识与技能目标:理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题;培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;2过程与方法目标:通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。3.情感、态度、价值观目标:通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探
2、索未知世界的意识及对待新知识的良好情感态度。【高考等级要求】C级【教学重点】两角和与差的余弦公式的理解与灵活运用。【教学难点】两角和与差的余弦公式的推导过程,特别是一般性的推广。【突破措施】先由特殊情形引入再向一般性过渡,充分挖掘学生的思考和探究能力,以达到对公式的深入理解和灵活运用。【教材分析】这节内容是教材必修4的第三章《三角恒等变换》第一节,是高考的重点考点,历年高考必考内容,一般在填空或解答题第15题出现。教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进
3、一步研究用单角的三角函数表示的两角和与差的三角函数.“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性。【学情分析】本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。他们经过半个多学期的高中生活,储备了一定
4、的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。【学具准备】小黑板圆规【学法设计】独立思考,生生交流探究,小组合作【知识链接】诱导公式平面向量的数量积一、产生对公式的需求引入新课(1分钟)首先让学生通过具体实例消除对“cos(α-β)=cosα-cosβ”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公式结构的可能情况进行大胆猜想和尝试性探索。二、自主探究引发思考层层深入得出结论(8分钟)独立思考以下问题:(1)向量的数量积则(2)单位圆上的点的坐标表示
5、由图可知:(),()则问题1:问题2:由出发,你能推广到对任意的两个角都成立吗?问题3:两角和与差的余弦公式推导(一)两角差的余弦公式设如果,那么故实际上,当为任意角时,由诱导公式总可以找到一个角都可转化,使。综上所述,,对于任意的角都成立。根据两角差的余弦公式,你可以猜猜提示:令(二)两角和的余弦公式(学生回答)结论:注:1.公式中两边的符号正好相反(一正一负);2.式子右边同名三角函数相乘再加减,且余弦在前正弦在后;3.式子中α、β是任意的。4式子的逆用,变形用正因为α、β的任意性,所以赋予C(α+
6、β)公式的强大生命力三.互相交流,小组活动公式应用闯关(12分钟)第一关:小试身手请用特殊角分别代替公式中α、β,你能求哪些非特殊角的值呢?(选择的特殊角可以是30°60°45°等)(1);(2);(3);……问题预测:学生动笔自由尝试、主动探索。有的同学说会求cos15°、cos75°、cos105°、cos(-15°)、cos165°……的值。甚至可能有的同学会说他验证了cos30°=sin60°…….(让同学感受获得公式后的第一份喜悦)由于初学公式的应用,我选择其中之一作示范。第二关:再接再厉若β
7、固定,分别用代替α,你将会发现什么结论呢?设计意图:引导同学发现余弦的诱导公式可用C(α±β)公式得到证明:初步让学生发现C(α±β)公式是诱导公式的推广。(从而让同学感受获得公式后的第二份喜悦)第三关:各显神通倘若让你对C(α±β)公式中的α、β自由赋值,你又将发现什么结论呢?(1);(2)(3)(4)……问题预测:可能有的同学发现cos2α=cos(α+α)=cos2α-sin2α,这是以后要学的二倍角公式,还有的同学发现:cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β
8、)sinβ,甚至有调皮的同学发现cos0=cos(α-α)=cos2α+sin2α=1,这就无意中证明了平方关系,……,(据此,让同学感受到C(α±β)公式的强大功能)。(必要时,教师可适当提示)。注:按课本编排未必能让同学注意公式中α,β的任意性,(而正是因α、β的任意性,所以才赋予C(α+β)公式的强大生命力)。于是我设计上述三个有层次的A,B,C级的问题,留时间先让同学用特殊角自由赋值,逐渐摸索、尝试,不断总结、归纳。这样更能使同学亲
此文档下载收益归作者所有