欢迎来到天天文库
浏览记录
ID:29629148
大小:106.56 KB
页数:9页
时间:2018-12-21
《高中数学 二面角练习课教时教案 旧人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二面角练习课 教学目标1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.教学重点和难点重点:使学生能够作出二面角的平面角;难点:根据题目的条件,作出二面角的平面角.教学设计过程重温二面角的平面角的定义.(本节课设计的出发点:空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的
2、定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.这正是本节课要解决的问题.)教师:二面角是怎样定义的?学生:从空间一直线出发的两个半平面所组成的图形叫二面角.教师:二面角的平面角是怎样定义的?学生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.教师:请同学们看下图.如图1:α,β是由l出发的两个半平面,O是l上任意一点,OCα,且OC⊥l;ODβ,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平
3、面角.从中我们可以得到下列特征:(1)过棱上任意一点,其平面角是唯一的;(2)其平面角所在平面与其两个半平面均垂直;另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.(3)体现出一完整的三垂线定理(或逆定理)的环境背影.教师:请同学们对以上特征进行剖析.学生:由于二面角的平面角是由一点和两条射线构成,所以二面角的定位可化归为“定点”或“定线”的问题.教师:特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背
4、影互相沟通,给计算提供方便.(上面的引入力争符合练习课教学的特点.练习是形成技能的重要途径,练习课主要是训练学生良好的数学技能,同时伴随着巩固知识,发展智能和培育情感.特别要注意做到第一,知识的激活.激活知识有两个目的,一是突出了知识中的重要因素;二是强化知识中的基本要素.第二,思维的调理.练习课成功的关键在于对学生思维激发的程度.学生跃跃欲试正是思维准备较好的体现.因此,准备阶段安排一些调理思维的习题,确保学生思维的启动和运作.请看下面两道例题.)例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC
5、,垂足为H,求侧面与底面所成的角的大小.分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)由此可见,二面角的平面角的定位可以考虑找“垂平面”.例2
6、 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上
7、,所以E点就是A′,这样的定位给下面的定量提供了可能.在Rt△AA′O中,∠AA′O=90°,通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB
8、⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如图6)由此可见,二面角的平面角的定位可以找“垂线段”.课堂练习1.在正方体ABCD
此文档下载收益归作者所有