欢迎来到天天文库
浏览记录
ID:29626431
大小:113.56 KB
页数:3页
时间:2018-12-21
《八年级数学下册《2.31运用公式法(一)》导学案 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级数学导学案2.31运用公式法(一)导学案学习目标:(一)教学知识点1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式.3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.(二)能力训练要求1.通过对平方差公式特点的辨析,培养学生的观察能力.2.训练学生对平方差公式的运用能力.(三)情感与价值观要求在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.一、课前准备(预习教材P54-P56,找出疑惑之处)复习整式乘法的公式二、新课导学
2、创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.互动探究探究任务一:请看乘法公式(a+b)(a-b)=a2-b2(1)左
3、边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b)(2)左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?2.公式讲解请大家观察式子a2-b2,找出它的特点.是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.如x2-16=(x)2-42=(x+4)(x-4).9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)探究任务
4、二:[例1]把下列各式分解因式:(1)25-16x2;(2)9a2-b2.解:(1)25-16x2=52-(4x)2=(5+4x)(5-4x);(2)9a2-b2=(3a)2-(b)2=(3a+b)(3a-b).[例2]把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.解:(1)9(m+n)2-(m-n)2=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2
5、n)(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2)探究升华:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.动手试试:判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)·(a2-1).议
6、一议:随堂练习:1.2.3三、总结提升学习小结:我们已学习过的因式分解方法有提公因式法和运用平方差公式法.如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.知识拓展:把下列各式分解因式(1)36(x+y)2-49(x-y)2;(2)(x-1)+b2(1-x);(3)(x2+x+1)2-1.当堂检测:把下列各式分解因式(1)a2b2-m2(2)(m-a)2-(n+b)2(3)
7、x2-(a+b-c)2(4)-16x4+81y4课后作业:CT2.4学习评价:自我评价你完成本节导学案的情况为()A、很好B、较好C、一般D、较差
此文档下载收益归作者所有