高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3

高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3

ID:29626071

大小:393.56 KB

页数:5页

时间:2018-12-21

高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3_第1页
高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3_第2页
高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3_第3页
高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3_第4页
高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3_第5页
资源描述:

《高中数学 2.3.1离散型随机变量的均值(2)教案 新人教a版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、福建省漳州市芗城中学高中数学2.3.1离散型随机变量的均值(2)教案新人教A版选修2-3课题:第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点:离散型随机变

2、量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望教学用具:多媒体、实物投影仪教学方法:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学过程:一、复习引入:1.均值或数学期望:一般地,若离散型随机变量ξ的概率分布为ξx1x2…xn…Pp1p2…pn…则称……为ξ的均值或数学期望,简称期望.  2.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数

3、学期望又称为平均数、均值4.均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,则5.若ξB(n,p),则Eξ=np二、讲解范例:例3.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:方案1:运走设备,搬运费为3800元.方案2:建保护围墙,建设费为2000元.但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水.试比较哪一种方案好.解:

4、用X1、X2和X3分别表示三种方案的损失.采用第1种方案,无论有无洪水,都损失3800元,即X1=3800.采用第2种方案,遇到大洪水时,损失2000+60000=62000元;没有大洪水时,损失2000元,即同样,采用第3种方案,有于是,EX1=3800,EX2=62000×P(X2=62000)+200000×P(X2=2000)=62000×0.01+2000×(1-0.01)=2600,EX3=60000×P(X3=60000)+10000×P(X3=10000)+0×P(X3=0)=60000×0.

5、01+10000×0.25=3100.采取方案2的平均损失最小,所以可以选择方案2.值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案2将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.例4.随机抛掷一枚骰子,求所得骰子点数的期望解:∵,=3.5例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续

6、抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:(=1,2,…,10)需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:123456789100.150.12750.10840.0920.07830.06660.05660.04810.04090.2316根据

7、以上的概率分布,可得的期望例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P所以1×+2×+3×+4×+5×+6×=(1+2+3+4+5+6)×=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送

8、旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量ξ的分布列为ξ15161718P0.10.50.30.1求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。