3、B边Aβ棱l B α定义从平面内一点出发的两条射线(半直线)所组成的图形从空间一直线出发的两个半平面所组成的图形构成射线—点(顶点)一射线半平面一线(棱)一半平面表示∠AOB二面角α-l-β或α-AB-β2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。B
6、面垂直的判定定理三种形式描述例1例2【作业布置】导学案课后练习与提高2.3.2平面与平面垂直的判定课前预习学案一、预习目标:(1)明确角的定义及推广。(2)初步知道什么是二面角。二、预习内容问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?问题3、二面角的有关概念角二面角图形A边顶点OB边Aβ棱l B α定义从平面内一点出发的两条射线(半直线)所组成的图形构成射线—点(顶点)一射线表示∠AOB问题4、二面角如何度量?三、提出疑惑同