高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)

高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)

ID:29617629

大小:771.06 KB

页数:8页

时间:2018-12-21

高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)_第1页
高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)_第2页
高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)_第3页
高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)_第4页
高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)_第5页
资源描述:

《高一数学 初升高衔接班 第八讲 集合综合复习讲义 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第八讲集合综合复习教学目标:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用重点、难点:集合的运算以及集

2、合在其他知识中的应用【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在

3、大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);集合相等:构成

4、两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作AB;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,=称S中子集A的补集;(3)简单性质:1)()=A;2)S=,=S4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集

5、合,称为集合A与B的并集。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。5.集合的简单性质:(1)(2)(3)(4);(5)(A∩B)=(A)∪(B),(A∪B)=(A)∩(B)。【典例解析】题型1:集合的概念(湖南卷理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为___例1.(广东卷理)已知全集,集合和的关系

6、的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个例2.(山东卷理)集合,,若,则的值为()A.0B.1C.2D.4题型2:集合的性质随堂练习1.(广东)设全集U=R,A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则下图中阴影表示的集合为()A.{2}B.{3}C.{-3,2}D.{-2,3}例4.已知全集,A={1,}如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由变式题:已知集合,,,求的值。题型3:集合的运算例5.已知集合=,求实数b,c,m的值.例6.(宁夏海南卷理)已知集合,则A∩()A.B

7、.C.D.例7.设集合P={m

8、-1<m≤0},Q={m∈R

9、mx2+4mx-4<0对任意实数x恒成立},则下列关系中成立的是()A.PQB.QPC.P=QD.P∩Q=Q题型4:图解法解集合问题例8.向50名学生调查对A、B两事件的态度,有如下结果赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人。问对A、B都赞成的学生和都不赞成的学生各有多少人?例9.求1到200

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。