高三数学一轮复习 第5讲 函数的图像教案

高三数学一轮复习 第5讲 函数的图像教案

ID:29617048

大小:428.06 KB

页数:12页

时间:2018-12-21

高三数学一轮复习 第5讲 函数的图像教案_第1页
高三数学一轮复习 第5讲 函数的图像教案_第2页
高三数学一轮复习 第5讲 函数的图像教案_第3页
高三数学一轮复习 第5讲 函数的图像教案_第4页
高三数学一轮复习 第5讲 函数的图像教案_第5页
资源描述:

《高三数学一轮复习 第5讲 函数的图像教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数的图像课标要求1.掌握基本初等函数的图象的画法及性质。如正比例函数、反比例函数、一元一次函数、一元二次函数、指数函数、对数函数、幂函数等;2.掌握各种图象变换规则,如:平移变换、对称变换、翻折变换、伸缩变换等;3.识图与作图:对于给定的函数图象,能从图象的左右、上下分布范围,变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性。甚至是处理涉及函数图象与性质一些综合性问题;4.通过实例,了解幂函数的概念;结合函数的图像,了解它们的变化情况。函数图像是高考必考内容,需认真复习。命题走向函数不仅是高中数学的核心内容

2、,还是学习高等数学的基础,所以在高考中,函数知识占有极其重要的地位。其试题不但形式多样,而且突出考查学生联系与转化、分类与讨论、数与形结合等重要的数学思想、能力。知识覆盖面广、综合性强、思维力度大、能力要求高,是高考考数学思想、数学方法、考能力、考素质的主阵地。从历年高考形势来看:(1)与函数图象有关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想来解题的能力,会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题;(2)函数综合问题

3、多以知识交汇题为主,甚至以抽象函数为原型来考察;(3)与幂函数有关的问题主要以为主,利用它们的图象及性质解决实际问题;预测2017年高考函数图象:(1)题型为1到2个填空选择题;(2)题目多从由解析式得函数图象、数形结合解决问题等方面出题;函数综合问题:(1)题型为1个大题;(2)题目多以知识交汇题目为主,重在考察函数的工具作用;幂函数:单独出题的可能性很小,但一些具体问题甚至是一些大题的小过程要应用其性质来解决。多媒体教学准备教学过程要点精讲:1.作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这

4、两种方法是本讲座的重点。作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究。而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换,这也是个难点。2.三种图象变换:平移变换、对称变换

5、和伸缩变换等等;①平移变换:Ⅰ、水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;1)y=f(x)y=f(x+h);2)y=f(x)y=f(x-h);Ⅱ、竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到;1)y=f(x)y=f(x)+h;2)y=f(x)y=f(x)-h。②对称变换:Ⅰ、函数的图像可以将函数的图像关于轴对称即可得到;y=f(x)y=f(-x)Ⅱ、函数的图像可以将函数的图像关于轴对称即可得到;y=f(x)y=-f(x)Ⅲ、函数的图像可以将函数的图像关于原点对称即可得到

6、;平移变换是初中就学过的,学生较易掌握、利用。但对称变换、翻折变换,学生以前虽有接触,但还不系统、牢固,这一内容需精讲精练。y=f(x)y=-f(-x)Ⅳ、函数的图像可以将函数的图像关于直线对称得到。y=f(x)x=f(y)Ⅴ、函数的图像可以将函数的图像关于直线对称即可得到;y=f(x)y=f(2a-x)。③翻折变换:Ⅰ、函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;Ⅱ、函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到④伸缩变换:Ⅰ、

7、函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;y=f(x)y=af(x)Ⅱ、函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到。f(x)y=f(x)y=f()3.识图:分布范围、变化趋势、对称性、周期性等等方面。典例解析:1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是(  )A.(2,2)        B.(-1,1)C.(3,2)D.(2,3)解析:选D 一次函数f(x)的图象过点A(0,1),B(1,2),则f

8、(x)=x+1,代入验证D满足条件.2.函数y=x

9、x

10、的图象大致是(  )解析:选A 函数y=x

11、x

12、为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax的图象可能是下列四个图象中的(  )解析:选B 因a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。