2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文

2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文

ID:29615578

大小:136.06 KB

页数:14页

时间:2018-12-21

2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文_第1页
2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文_第2页
2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文_第3页
2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文_第4页
2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文_第5页
资源描述:

《2019届高考数学一轮复习 选考部分 选修系列4层级快练75 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、层级快练(七十五)1.直线(t为参数)的倾斜角为(  )A.70°        B.20°C.160°D.110°答案 B解析 方法一:将直线参数方程化为标准形式:(t为参数),则倾斜角为20°,故选B.方法二:tanα===tan20°,∴α=20°.另外,本题中直线方程若改为,则倾斜角为160°.2.若直线的参数方程为(t为参数),则直线的斜率为(  )A.B.-C.D.-答案 D3.参数方程(θ为参数)表示的曲线上的点到坐标轴的最近距离为(  )A.1B.2C.3D.4答案 A解析 参数方程(θ为参数)表示的

2、曲线的普通方程为(x+3)2+(y-4)2=4,这是圆心为(-3,4),半径为2的圆,故圆上的点到坐标轴的最近距离为1.4.(2018·皖南八校联考)若直线l:(t为参数)与曲线C:(θ为参数)相切,则实数m为(  )A.-4或6B.-6或4C.-1或9D.-9或1答案 A解析 由(t为参数),得直线l:2x+y-1=0,由(θ为参数),得曲线C:x2+(y-m)2=5,因为直线与曲线相切,所以圆心到直线的距离等于半径,即=,解得m=-4或m=6.5.(2014·安徽,理)以平面直角坐标系的原点为极点,x轴的正半轴为

3、极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为(  )A.B.2C.D.2答案 D解析 由题意得直线l的方程为x-y-4=0,圆C的方程为(x-2)2+y2=4.则圆心到直线的距离d=,故弦长=2=2.6.(2017·北京朝阳二模)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4·sin(θ+),则直线l和曲线C的公共点有(  )A.0个

4、B.1个C.2个D.无数个答案 B解析 直线l:(t为参数)化为普通方程得x-y+4=0;曲线C:ρ=4sin(θ+)化成普通方程得(x-2)2+(y-2)2=8,∴圆心C(2,2)到直线l的距离为d==2=r.∴直线l与圆C只有一个公共点,故选B.7.在直角坐标系中,已知直线l:(s为参数)与曲线C:(t为参数)相交于A,B两点,则

5、AB

6、=________.答案 解析 曲线C可化为y=(x-3)2,将代入y=(x-3)2,化简解得s1=1,s2=2,所以

7、AB

8、=

9、s1-s2

10、=.8.(2017·人大附中模拟)已

11、知直线l的参数方程为(t为参数),圆C的极坐标方程为ρ+2sinθ=0,若在圆C上存在一点P,使得点P到直线l的距离最小,则点P的直角坐标为________.答案 (,-)解析 由已知得,直线l的普通方程为y=-x+1+2,圆C的直角坐标方程为x2+(y+1)2=1,在圆C上任取一点P(cosα,-1+sinα)(α∈[0,2π)),则点P到直线l的距离为d===.∴当α=时,dmin=,此时P(,-).9.(2018·衡水中学调研)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系

12、,曲线C的极坐标方程为ρ=2sinθ-2cosθ.(1)求曲线C的参数方程;(2)当α=时,求直线l与曲线C交点的极坐标.答案 (1)(φ为参数)(2)(2,),(2,π)解析 (1)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ.所以曲线C的直角坐标方程为x2+y2=2y-2x,化为标准方程为(x+1)2+(y-1)2=2.曲线C的参数方程为(φ为参数).(2)当α=时,直线l的方程为化为普通方程为y=x+2.由解得或所以直线l与曲线C交点的极坐标分别为(2,),(2,π).10.(2016·课

13、标全国Ⅱ)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,

14、AB

15、=,求l的斜率.答案 (1)ρ2+12ρcosθ+11=0(2)或-解析 (1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程为ρ2+12ρcosθ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得

16、ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cosα,ρ1ρ2=11.

17、AB

18、=

19、ρ1-ρ2

20、==.由

21、AB

22、=得cos2α=,tanα=±.所以l的斜率为或-.11.(2017·江苏,理)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。