欢迎来到天天文库
浏览记录
ID:29609000
大小:129.56 KB
页数:3页
时间:2018-12-21
《八年级数学下册 4.3 公式法导学案1(新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、运用公式法(一)【学习目标】课标要求:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.目标达成:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力.情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.三、教学过程分析第一环节【课前展示】活动内容:填空:(1)(x+3)(x–3)=;(2)(4x+y)(4x–y)=;(3)(1+2x)(1–2x)=;(4)(3m+2n)(3m
2、–2n)=.根据上面式子填空:(1)9m2–4n2=;(2)16x2–y2=;(3)x2–9=;(4)1–4x2=.平方差的公式的内容是什么?第二环节【创境激趣】活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2–b2=(a+b)(a–b)注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成.第三环节【自主探究,合作交流,展示汇报】。活动内容:把下列各式因式分解:(1)25–16x2(2)9a2–注意事项:学生对含有分数的
3、平方差公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.第四环节【强化训练】活动内容:将下列各式因式分解:(1)9(x–y)2–(x+y)2(2)2x3–8x活动内容:1、判断正误:(1)x2+y2=(x+y)(x–y)()(2)–x2+y2=–(x+y)(x–y)()(3)x2–y2=(x+y)(x–y)()(4)–x2–y2=–(x+y)(x–y)()2、把下列各式因式分解:(1)4–m2(2)9m2–4n2(3)a2b2-m2(4)(m-a)2-(n+b)2(5)–16x4+81y4
4、(6)3x3y–12xy3、如图,在一块边长为a的正方形纸片的四角,各剪去一个边长为b的正方形.用a与b表示剩余部分的面积,并求当a=3.6,b=0.8时的面积.第五环节【总结归纳】活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?注意事项:学生认识到了以下事实:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;课后练习:课本第56页习题2.4第1、2、3题【板书设计】创境激趣把下列各式因式分解:【教学反思】逆向思维是一种启发智力的
5、方式,它有悖于人们通常的习惯,而正是这一特点,使得许多靠正向思维不能或是难于解决的问题迎刃而解.一些正向思维虽能解决的问题,在它的参与下,过程可以大大简化,效率可以成倍提高.正思与反思就象分析的一对翅膀,不可或缺.传统的课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神.因此,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性
6、,提高学习效果、学习兴趣,及思维能力和整体素质.
此文档下载收益归作者所有