欢迎来到天天文库
浏览记录
ID:29605950
大小:200.56 KB
页数:4页
时间:2018-12-21
《八年级数学下册 1.3 线段的垂直平分线(第2课时)导学案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3线段的垂直平分线【学习目标】课标要求:1、能够证明三角形三边垂直平分线交于一点2、经历猜想、探索,能够作出符合条件的三角形3、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识目标达成:1、能够证明与线段垂直平分线相关的结论2、已知底边和底边上的高,能利用尺规作出等腰三角形.学习流程:【课前展示】出示问题【创境激趣】尺规作图作三条边的垂直平分线【自学导航】教师提问:“[利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么?(教师可用多媒体演示作图过程)”“三角形三边的垂直平分线交于一点.”、
2、“这一点到三角形三个顶点的距离相等.”等都是学生可以发现的直观性质。下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.教师质疑:“这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义.”这节课我们来学习探索和线段垂直平分线有关的结论.【合作探究】(1)教师引导学生分析,寻找证明方法。我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.不妨我们再来看一下演示过程,或许你能从中受到启示.通过演示和启发,引导学生认同
3、:“两直线必交于一点,那么要想证明‘“三线共点’,只要证第三条直线过这个交点或者说这个点在第三条直线上即可.”虽然我们已找到证明“三线共点”的突破口,询问学生如何知道这个交点在第三边的垂直平分线上呢?师生共析,完成证明(2)讨论结束后,学生书写证明过程。教师点评,注意几何符号语言的规范性。已知:在△ABC中,设AB、BC的垂直平分线交于点P,连接AP,BP,CP.求证:P点在AC的垂直平分线上.证明:∵点P在线段AB的垂直平分线上,∴PA=PB(线段垂直平分线上的点到线段两个端点的距离相等).同理PB=PC.∴PA=PC.∴P点在AC的垂直平分线上(到线段两个
4、端点距离相等的点.在这条线段的垂直平分线上).∴AB、BC、AC的垂直平分线相交于点P.进一步设问:“从证明三角形三边的垂直平分线交于一点,你还能得出什么结论?”(交点P到三角形三个顶点的距离相等.)(3)多媒体演示我们得出的结论:定理 三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等【展示提升】典例分析知识迁移(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?(3)已知等腰三角形的底边及底边上的
5、高,你能用尺规作出等腰三角形吗?能作几个?学生通过小组讨论,并尝试作出草图,验证自己的结论。由学生思考可得:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:△ABC,使BC=a,BC边上的高为h从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过此点作BC边的垂线,最后以D为端点在垂线上截取AD(或A1D),使AD=A1D=h,连接AB,AC(或△A1B,AlC),所得△ABC(或△A1BC)都满足条件,
6、所以这样的三角形有无数多个.观察还可以发现这些三角形不都全等.(见几何画板课件)(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个.根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因为只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.另外有学生补充:“不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上挖去.”(3)如果底边和底边上的高都一定,这样的等腰三角形应该只有两个,并且它们是
7、全等的,分别位于已知底边的两侧.(5)例题学习已知底边及底边上的高,求作等腰三角形.已知:线段a、h求作:△ABC,使AB=AC,BC=a,高AD=h作法:1.作BC=a;2.作线段Bc的垂直平分线MN交BC于D点;3.以D为圆心,h长为半径作弧交MN于A点;4.连接AB、AC∴△ABC就是所求作的三角形(如图所示).(6)做一做:课本第25页:教师引导学生分析作出草图,注意对学生作法叙述的准确性加以更正。【强化训练】(1)例题:已知直线l和l上一点P,用尺规作l的垂线,使它经过点P.学生先独立思考完成,然后交流:说出做法并解释作图的理由。(2)拓展:如果点P
8、是直线l外一点,那么怎样用尺规作l的垂
此文档下载收益归作者所有