八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版

八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版

ID:29604947

大小:161.06 KB

页数:3页

时间:2018-12-21

八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版_第1页
八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版_第2页
八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版_第3页
资源描述:

《八年级数学下册 1.1 等腰三角形(第3课时)导学案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1等腰三角形【学习目标】课标要求:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用。4.培养学生的逆向思维能力。目标达成:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用。4.培养学生的逆向思维能力。学习流程:【课前展示】通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。问题1.等腰三角形性质定理的内容是什么?这个命题

2、的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?【创境激趣】我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?【自学导航】在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。【合

3、作探究】在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.[师]你是如何想到的?[生]由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论.[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形

4、全等的.后两种方法是可行的.[师]那么就请同学们任选一种方法按要求将推理证明过程书写出来.(教师可让两个同学在黑板上演示,并对推理证明过程讲评)(证明略)[师]我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.【展示提升】典例分析知识迁移已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠

5、B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角对等边).又∵∠3=∠4.在△ABC和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).【强化训练】NMCBAD1.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长..2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角

6、形的顶角的度数?【归纳总结】1、让学生畅谈收获,包括具体结论以及其中的思想方法等。形成及时总结语反思的意识与习惯,提高学生能力。【板书设计】1.1(3)等腰三角形性质例题【教学反思】

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。