欢迎来到天天文库
浏览记录
ID:29600521
大小:362.06 KB
页数:6页
时间:2018-12-21
《八年级数学上册 4.1 函数教学设计 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.1函数教学设计一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量
2、之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。一次本节课教学目标定位为:1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;
3、2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。4.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;5.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神对学生来讲本节课的难点在于对函数概念的理解;四、教学准备教具:教材,课件,电脑学具:教材,笔,练习本五、教学过程设计本节课设计了五个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关
4、的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。意图:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。效果:生活实例,激发了学生的研究热情,起到很好的导入效果。问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。随着层数的增加,物体的总数是如何变化的?填写下表:问题3。一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别等于-4
5、3,-27,0,18时,相应的热力学温度T是多少?(2)给定一个大于-273℃的t值,你能求出相应的T值吗?意图:通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).效果:通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.第四环节:概念辨析与巩固内容:1.介绍常量与变量的概念常量:在某一变化过程中,始终保持不变的量;变量:在某一变化过
6、程中,可以取不同数值的量.指出下列关系式中的变量与常量:(1)球的表面积S(cm2)与球半径R(cm)的关系式是S=4R2(2)以固定的速度V0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=V0t-4.9t2.2.概念应用举例1.小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s与时间t之间的变化关系吗?S是t的函数吗?路程s随时间t的变化的图像是什么?略解:S=15t,是函数,图像略.2.如果A、B路程为200千米,一辆汽车从A地到B地行驶的速度v与行驶时间t是怎样的变化关系?V是t的函数吗?速度v随时间t的变化的图像是什么?略解:,
7、是函数,图像略.3.若正方形的边长为x,则面积y与边长x之间的关系是什么?y是x的函数吗?面积y随边长x的变化的图像是什么?略解:s=x2,是函数,图像通过课件展示给同学们意图:通过常量与变量的区别阐述,进一步理解函数的关键;通过三个例题,对函数概念进行更深入的探讨,再次揭示函数概念的本质特征.效果:通过对函数基本特征的反复比较与探究,学生能比较深刻地理解函数的概念;同时三个例题涉及了初中阶段将要学到一次函数、反比例函数和二次函数,也为学生将来
此文档下载收益归作者所有