欢迎来到天天文库
浏览记录
ID:29597899
大小:905.06 KB
页数:4页
时间:2018-12-21
《八年级数学上册 12.2 三角形全等的判定(第4课时)教案 (新版)新人教版(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2三角形全等的判定教学目标1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、掌握直角三角形全等的判定,并能运用其解决一些实际问题.3、在探索直角三角形全等的判定及其运用的过程中,能够进行有条理的思考并进行简单的推理.重点难点重点:运用直角三角形全等的判定解决一些实际问题.难点:熟练运用直角三角形全等的判定解决一些实际问题.教学过程Ⅰ.提出问题,复习旧知1、判定两个三角形全等的方法:、、、.2、如图,Rt△ABC中,直角边是、,斜边是.3、如图,AB⊥BE于C,DE⊥BE于E,(1
2、)若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”),根据(用简写法)(4)若AB=DE,BC=EF,AC=DF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)Ⅱ.导入新课(一)探索练习:(动手操作):已知线段a,c(a3、=a.1、按步骤作图:ac①作∠MCN=∠=90°,②在射线CM上截取线段CB=a,③以B为圆心,C为半径画弧,交射线CN于点A,④连接AB.2、与同桌重叠比较,是否重合?3、从中你发现了什么?斜边与一直角边对应相等的两个直角三角形全等.(HL)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则4、△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据(4)若AC=BD,AE=BF,CE=DF.则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据3、判断两个直角三角形全等的方法不正确的有()(A)两条直角边对应相等(B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等(D)两个锐角对应相等4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.理由:∵AF5、⊥BC,DE⊥BC(已知)∴∠AFB=∠DEC=°(垂直的定义)在Rt△和Rt△中∴≌()∴∠=∠()∴(内错角相等,两直线平行)5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由.(三)提高练习:1、判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等.()(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等()(3)一个锐角与一斜边对应相等的两个直角三角形全等()(4)两直角边对应相等的两个6、直角三角形全等()(5)两边对应相等的两个直角三角形全等()(6)两锐角对应相等的两个直角三角形全等()(7)一个锐角与一边对应相等的两个直角三角形全等()(8)一直角边和斜边上的高对应相等的两个直角三角形全等()2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的()内写出判定全等的依据.(1)()(2)()(3)()(4)()课时小结至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)6.7、HL(仅用在直角三角形中)作业课本习题
3、=a.1、按步骤作图:ac①作∠MCN=∠=90°,②在射线CM上截取线段CB=a,③以B为圆心,C为半径画弧,交射线CN于点A,④连接AB.2、与同桌重叠比较,是否重合?3、从中你发现了什么?斜边与一直角边对应相等的两个直角三角形全等.(HL)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则
4、△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据(4)若AC=BD,AE=BF,CE=DF.则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据3、判断两个直角三角形全等的方法不正确的有()(A)两条直角边对应相等(B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等(D)两个锐角对应相等4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.理由:∵AF
5、⊥BC,DE⊥BC(已知)∴∠AFB=∠DEC=°(垂直的定义)在Rt△和Rt△中∴≌()∴∠=∠()∴(内错角相等,两直线平行)5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由.(三)提高练习:1、判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等.()(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等()(3)一个锐角与一斜边对应相等的两个直角三角形全等()(4)两直角边对应相等的两个
6、直角三角形全等()(5)两边对应相等的两个直角三角形全等()(6)两锐角对应相等的两个直角三角形全等()(7)一个锐角与一边对应相等的两个直角三角形全等()(8)一直角边和斜边上的高对应相等的两个直角三角形全等()2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的()内写出判定全等的依据.(1)()(2)()(3)()(4)()课时小结至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)6.
7、HL(仅用在直角三角形中)作业课本习题
此文档下载收益归作者所有