2013高考数学专题之--直线与圆锥曲线

2013高考数学专题之--直线与圆锥曲线

ID:29481441

大小:377.54 KB

页数:14页

时间:2018-12-20

2013高考数学专题之--直线与圆锥曲线_第1页
2013高考数学专题之--直线与圆锥曲线_第2页
2013高考数学专题之--直线与圆锥曲线_第3页
2013高考数学专题之--直线与圆锥曲线_第4页
2013高考数学专题之--直线与圆锥曲线_第5页
资源描述:

《2013高考数学专题之--直线与圆锥曲线》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、专题五 直线与圆锥曲线1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程f(x,y)=0.由,消元如消去y后得ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合).②若a≠0,设Δ=b2-4ac.a.Δ____0时,直线和圆锥曲线相交于不同两点;b.Δ____0时,直线和圆锥曲线相切

2、于一点;c.Δ____0时,直线和圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长问题(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长

3、P1P2

4、=____________或

5、P1P2

6、=____________.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).(3)求经过圆锥曲线的焦点的弦的长度,应用圆锥曲线的定义,转化为两个焦半径之和,往往比用弦长公式简捷.3.圆锥曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆+=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-;在双曲线-

7、=1中,以P(x0,y0)为中点的弦所在直线的斜率k=;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜率k=.[难点正本 疑点清源]1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点.还可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分

8、重视韦达定理和判别式的应用.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.题型一 直线与圆锥曲线的位置关系例1 已知定圆A:(x+1)2+y2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.(1)求曲线C的方程;(2)若点P(x0,y0

9、)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点.探究提高 将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线的位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量+与垂直?如果存在,求k值;如果不存在,请说明理由.题型二 圆锥曲线中的弦长问

10、题例2 设点F,动圆P经过点F且和直线y=-相切,记动圆的圆心P的轨迹为曲线W.(1)求曲线W的方程;(2)过点F作互相垂直的直线l1,l2分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.探究提高 由直线与圆锥曲线的方程联立解方程组是解决这类问题的通法,而相关的最值的讨论求解往往需要建立目标函数,进一步转化为函数法或不等式法来求解.设A(x1,y1),B(x2,y2)是椭圆+=1(a>b>0)上的两点,已知向量m=,n=,若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若直线AB的斜率存在且直线AB过椭圆的焦点F(0,c)(c为

11、半焦距),求直线AB的斜率k的值;(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.题型三 圆锥曲线中的定值或定点问题例3 已知定点C(-1,0)及椭圆x2+3y2=5,过点C的动直线与椭圆相交于A,B两点,在x轴上是否存在点M,使·为常数?若存在,求出点M的坐标;若不存在,请说明理由.探究提高 本题的难点是由·的表达式,如何确定m值使其与直线的斜率无关,化解的方法就是对k进行集项,只有当k的系数等于零时,式子的值才能与k无关,即在m2+2m--中6m+14=0.本题当然也

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。