欢迎来到天天文库
浏览记录
ID:29390280
大小:374.00 KB
页数:5页
时间:2018-12-19
《高考数学二轮复习教案(17)推理与证明 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、推理与证明【专题要点】1.归纳推理:主要应用于先由已知条件归纳出一个结论,并加以证明或以推理作为题目的已知条件给出猜测的结论,并要求考生会应用或加以证明.2.类比推理:通过两类事物的相似性或一致性,用一类事物的性质去推测另一类事物的性质,得出一个明确的结论.常见的有结论类比和方法类比.3.演绎推理4.证明①综合法和分析法:会用这两种方法证明具体问题;②反证法近几年高考中加大了其考察力度.③数学归纳法.在有关正整数的问题证明时常用数学归纳法进行证明.【考纲要求】1合情推理与演绎推理 ①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
2、②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. ③了解合情推理和演绎推理之间的联系和差异. 2直接证明与间接证明 ①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. ②了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点. 3数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【知识纵横】【教法指引】高考的“推理与证明”一般不单独设题,主要和其他知识结合在一起,属于综合题,可以综合在诸如立体几何、解析几何、数列、函数、不等式等内容中,既有计算又有证明,解决此类题目时
3、,一定要建立合理的解题思路,对典型的证明方法一定要掌握在“推理与证明”的内容中,“合情推理”是一种重要的归纳,主要从已知条件归纳出一个结论,可以是形式上的归纳,也可以是数学性质的归纳,一般以客观题的形式出现;演绎推理则是逻辑思维能力的一个重要体现,试题中考查该部分内容的比例较大,命题时既可以使用选择题、填空题的形式,又可以在解答题型中,以证明题的形式进行考查,立体几何是考查“演绎推理”的最好教材“直接证明和间接证明”在高考中一般也不会直接命题,仍然是以其他知识为载体,在考查其他知识的同时,考查本部分内容,是每年高考的考查重点,几乎涉及数学的各方面知识,代表着研究性命题的发展
4、趋势,选择题、填空题、解答题都可能涉及。该部分命题的方向主要在函数、三角恒等变换、数列、立体几何、解析几何等方面,主要以考查“直接证明”中的综合法为主。由于“数学归纳法”仅限于与自然数有关的命题,故单独命题的可能性不大,多数以数列及不等式为载体来综合考查。高考常见的题型有:证明等式问题、证明不等式问题、证明整除问题和解决数列中的探究性问题等,但不排除在客观题中考查数学归纳法的原理和证明步骤【典例精析】1.考查类比推理例1(2003年全国卷)在平面几何里,由勾股定理:“设的两边互相垂直,则”,拓展到空间,类比平面几何勾股定理,可以得到的正确的结论是:“设三棱锥的三个侧面两两互
5、相垂直,则”。解:如图,作,垂足为,连接.由三个侧面两两相互垂直可知.在中,,得,又;;.所以.点评:这道题目考察的是平面到空间的推广类比.解答这类题目不能只满足结论形式上的相似,还必须是真命题,结论的推导还是要从平面结论下手,一般在推导空间的结论时要用到平面的结论,或利用类似平面结论推导的方法,如等面积法类比等体积,直线类比作平面等.例2(2009年浙江卷理科第15题)观察下列等式:,,,,………由以上等式推测到一个一般的结论:对于,.w.w.w.k.s.5.u.c.o.m答案:【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有,二项指数分别为,因此对于
6、,2.考查归纳推理例3(2009年福建卷理科第16题)五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的是为3的倍数,则报该数的同学需拍手一次,当第30个数被报出时,五位同学拍手的总次数为答案:7次【解析】这样得到的数列这是历史上著名的数列,叫斐波那契数列.寻找规律是解决问题的根本,否则,费时费力.首先求出这个数列的每一项除以3所得余数的变化规律,再求所求就比较简单了.这个数列的变化规律是:从第三个数开始递增,且是前两项之和,那么有1、1、2、3、5、8、13、21、
7、34、55、89、144、233、377、610、987……分别除以3得余数分别是1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、0……由此可见余数的变化规律是按1、1、2、0、2、2、1、0循环,周期是8.在这一个周期内第四个数和第八个数都是3的倍数,所以在三个周期内共有6个报出的数是三的倍数,后面6个报出的数中余数是1、1、2、0、2、2,只有一个是3的倍数,故3的倍数总共有7个,也就是说拍手的总次数为7次.例4(2008湖北,15)观察下列等式:……………………………………可以推测,当x≥2(k∈
此文档下载收益归作者所有