高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)

高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)

ID:29386089

大小:390.00 KB

页数:12页

时间:2018-12-19

高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)_第1页
高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)_第2页
高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)_第3页
高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)_第4页
高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)_第5页
资源描述:

《高二数学上 8.1《向量的坐标表示及其运算》教案(沪教版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、8.1(1)向量的坐标表示及其运算(1)一.教学内容分析按现行上海市中小学数学课程标准,本章内容是在初中学习了向量的基本概念、向量的加法、减法、实数与向量的积等基础之上的后继学习.但与初中有所不同的是,初中教材对向量的学习是以“形”为主,主要从“形”的角度展开,而本章内容则主要是以“数”为主,从“数”的角度进行论述.当然,由于向量本身所具有的数形结合的特点,本章教材在以“数”为主旨处理教学内容的同时并没有弱化向量的“形”的方面的特征,而是二者相得益彰,互为依赖、互为补充.以“数”为主旨研究向量,其核心手段是

2、向量及其运算的坐标表示.向量的坐标表示,实际上是向量的代数表示.在引入向量的坐标表示后,向量的加法、减法、实数与向量的积、向量的数量积等就完全可以用它们的坐标的加法、减法、数乘、数量积等运算来进行,使向量运算完全代数化,将数与形紧密结合起来.这样,就使得很多问题,可以转化为熟知的数量的运算进行解决.向量及其运算的坐标表示,一方面为用代数方法处理几何问题提供了通道,另一方面也为向量概念推广到高维空间指明了途径,同时,它也是高中数学中描述与处理如立几、解几、三角等诸多问题的一个有力的工具,在高考中也占有一个重要

3、的地位.作为本章的第一课时,本节课的主要内容是向量的坐标表示及其运算.它是本章重要的基础性与前提性内容,它引入了将向量问题代数化的基本手段与方法——向量的坐标表示.本节内容课本上的基本处理方法是在引入一些相关的基础性的概念之后,通过任意向量都可以正交分解为基本单位向量的线性组合,在向量的正交分解的基础上抽象概括出向量的坐标表示形式,并依据向量的正交分解的本质得到向量坐标形式下的运算法则.本节课要着力解决三个问题:一是要解决引入向量的坐标形式的必要性的问题,以引起学生学习的动机,二是要解决如何引入向量的正交分

4、解及如何由此抽象出向量的坐标形式或者说是如何让学生理解向量坐标的本质的问题,三是要解决引入向量坐标形式以后如何以坐标形式进行运算的问题.作为本节课(本章的第一个课时)来说,第二个问题是重中重之中,因为如果学生不能理解向量的坐标是怎么来的,它的本质是什么,就会对后继学习带来一定的困难.因此,我们在课上要对这一点特别的重视.二.教学目标设计1.了解基本单位向量、位置向量、向量的正交分解等概念;会用坐标表示向量;会用两向量的坐标形式的和、差及实数与向量的积等运算解决相关问题.2.经历如何将位置向量及任意向量表示为

5、基本单位向量的线性组合这一正交分解的过程,以及经历如何通过向量的正交分解的本质概括抽象出向量的坐标表示的过程,初步形成抽象思维的能力;理解平面向量与一对有序实数对的一一对应关系,理解向量的坐标表示方法及其运算法则;体会数形结合的思想方法.3.感知数学中的运动、变化、相互联系与相互转化的规律,加深对辩证唯物主义观点的体验;发展从数学的角度分析和解决问题的能力,以及通过积极参与数学学习和问题解决的过程,增强学习的主体意识,形成数学的应用意识,养成严谨、慎密的思维习惯.三.教学重点及难点教学重点是如何写向量的坐标

6、以及向量坐标形式的运算及其应用;教学难点是对向量的正交分解的过程的理解以及由向量的正交分解抽象出向量的坐标表示的过程的理解.四.教学流程设计小结与作业坐标表示的运算运用与深化知起点与终点的向量的坐标表示情境问题向量的正交分解向量的坐标表示位置向量的正交分解任意向量的正交分解位置向量的坐标表示任意向量的坐标表示返回到情境问题五.教学过程设计一.情境引入上海市莘庄中学的健美操队四名队员A、B、C、D在一个长10米,宽8米的矩形表演区域EFGH内进行健美操表演.(1)若在某时刻,四名队员A、B、C、D保持如图1所

7、示的平行四边形队形.队员A位于点F处,队员B在边FG上距F点3米处,队员D位于距EF边2米距FG边5米处.你能确定此时队员C的位置吗?[说明]此时队员C在位于距EF边5米距FG边5米处.这个图形比较特殊,学生很快就会得到答案,这时教师引入第二个问题.(2)若在某时刻,四名队员A、B、C、D保持如图2所示的平行四边形队形.队员A位于距EF边2米距FG边1米处,队员B在距EF边6米距FG边3米处,队员D位于距EF边4米距FG边5米处.你能确定此时队员C的位置吗?[说明]不要求学生写出结果,只引导学生思考.这个图

8、形更为一般一些,学生解决的可能不是很顺,这时,教师就可以说,这一节我们就来学习一个新的内容:向量的坐标表示及其运算,学习了这个内容之后,同学们只要花上两分钟或者只要一分钟的时间就可以解决这个问题了,引起学生学习的兴趣与探究的欲望.二.学习新课1.向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,如图,称以原点O为起点的向量为位置向量,如下图左,即为一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。