欢迎来到天天文库
浏览记录
ID:29372159
大小:54.00 KB
页数:4页
时间:2018-12-19
《高中数学第五届全国青年教师观摩与评比活动《几何概型》教案说明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教A版普通高中课程标准实验教材数学必修3第三章第三节一、本课数学内容的本质、地位、作用分析:前面已经学习过了第二章统计和第三章概率的前两节内容,概率是研究随机现象规律的学科,它为应用数学解决实际问题提供了新的思想和方法,同时为统计学的发展提供了理论基础。由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中,加强概率统计的份量成为必然。“几何概型”这一节就是新增加的内容,是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸,同时也更广泛地满足了随机模拟的需要。几何概型的关键是建立合理的几何模型解决相关概率问题,通过建
2、立基本事件与相应元素的对应,达到求解相关概率问题的目的,体现了数形结合的数学思想,是概率问题与几何问题的一种完美结合。本节内容极能体现新课程理念,可以成为“知识与技能、过程与方法及情感态度价值观”三个纬度目标有机融合的重要载体,从而实现三位一体的课程功能。二、教学目标分析:根据上述教材分析,结合学生已有的认知结构,我确定本节课的三维教学目标如下:(1)知识与技能:了解几何概型的两个特点;能识别实际问题中的概率模型是否为几何概型;会利用几何概型公式对简单的几何概型问题进行计算。(2)过程与方法:学生通过自主探究,经历概念产生与发展的过程,体验数学发现与创造的历程,进一步培养学生观察、分析、联想
3、、类比等逻辑推理能力,渗透化归、数形结合等思想方法,提高学生的数学素养。(3)情感、态度与价值观:本节课选材取例均来源于生活,学生积极参与探究,进一步树立数学是来源于生活而又服务于生活的意识,把丰富的生活感知与数学理性有机融合起来,让学生感受生活中处处有数学,体会数学对自然与社会所产生的作用,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的问题。三、教学重难点分析:几何概型概念中的核心是它的两个特征:(1)试验中所有可能出现的基本事件有无限多个。(2)每个基本事件出现的可能性相等(等可能性)。尤其是特征(2),学生如果理解不到位,很容易在做题中出现错误,所以我确立教学的重点为:理解几何
4、概型的定义,会用公式计算概率;难点为:1、等可能性的判断,对几何概型中基本事件的构成分析2、将实际问题转化为几何概型四、学情教法分析:按照教材设计,本节计划分两课时完成。第一课时为几何概型,第二课时为均匀随机数的产生。第一课时中如果简单介绍概念,而后大量利用练习巩固概念,缺乏几何概型形成过程的教学势必对而后随机模拟的学习带来不小的麻烦。因而我利用[创设情境]、[实验探究]、[随机模拟]等教学手段,让学生自主参与探究学习活动,充分向学生展示几何概型概念形成的过程,而避免简单直接呈现概念。对于高二的学生,知识经验已较为丰富,具备了较强的自主探究能力和概括归纳能力,所以本节课在教学方法上通过让学生
5、亲历实验、观察蕴含在生活当中的问题,从中体会几何概型特点及其概率计算公式的几何意义,让学生在动手操作中,经历概念数学化的过程,让学生在感性活动基础上,浓墨重彩的勾画概念的建构过程,激发思维从困惑、迷茫直至清晰、透彻,从而让学生的思维从感性上升到理性。五、本节课的教法特点以及预期效果分析:本节课由(一)创设情境—导入新课(二)实验探究—形成概念(三)讨论研究—深化概念(四)应用举例—巩固新知(五)总结反思—提高认识(六)任务后延—自主探究六个教学环节构成。(一)创设情境—引入新课:正如本册教材主编寄语中所说:“数学是自然的,数学概念不是强加于人的。”创设情境时,学生举一个例子,老师举一个例子,
6、老师自然启发,学生思考作答,一问一答间既复习了古典概型的知识,又引出了几何概型的知识。这样就避免了简单直接呈现概念,突出了本节课的重点,过程中师生平等交流,学生的课堂主体地位得到体现,和谐的师生交流必将打造和谐的课堂。(二)实验探究—形成概念:几何概型概率公式学生借已有知识经验归纳得出,我设计了一个实验环节对其准确性进行验证。这样,通过实例猜想公式,再设计试验模拟验证公式的准确性,最后应用公式解题,这就形成了我们数学上的由特殊到一般再到特殊的完备的知识体系。经过这样的过程,就突出了本节的教学重点,避免了课堂教学简单化、机械化,体现了新课程理念,真正实现了三个维度目标的有机融合。(三)讨论研究
7、—深化概念:为了进一步深化几何概型概念,我设计了两个环节:①对古典概型和几何概型的异同点进行对比,强化学生对几何概型概念的理解。②对几何概型求概率的问题程序化。本环节的设计具有很强的针对性,对两种概率模型的异同点进行类比分析,可以使学生准确的区分两种概型;学生已学习了第一章算法初步,对求几何概型概率的问题程序化,可以使学生的解题思路更加清晰准确。(四)应用举例—巩固新知:本节一个难点就是例3中将实际问题转化为
此文档下载收益归作者所有