高中数学《换底公式》教案 北师大必修1

高中数学《换底公式》教案 北师大必修1

ID:29371669

大小:59.50 KB

页数:3页

时间:2018-12-19

高中数学《换底公式》教案 北师大必修1_第1页
高中数学《换底公式》教案 北师大必修1_第2页
高中数学《换底公式》教案 北师大必修1_第3页
资源描述:

《高中数学《换底公式》教案 北师大必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:对数换底公式教学目的:(1)理解对数的概念,能够进行对数式与指数式互化;(2)掌握对数的运算性质;(3)掌握好积、商、幂、方根的对数运算法则,能根据公式法则进行数、式、方程的正确运算及变形,进一步培养学生合理的运算能力;(A)教学重点:对数的定义、对数的运算性质;教学难点:对数的概念;教学过程:一、复习导入1.对数的性质:(1)负数和零没有对数;(2)1的对数是零;(3)底数的对数等于1;2.对数运算性质(1)(2)(3)引例:已知,求的值;问:更一般地,我们有,如何证明?二、新课教学1.证明:(由脱对数取对数引导学生证明)证明:设,则两边取c为底的对数,得:

2、,即注:公式成立的条件:;2.由换底公式可推出下面两个常用公式:(1)(2)利用换底公式统一对数底数,即“化异为同”是解决有关对数问题的基本思想方法。三、例题解析例题1:求的值;分析:利用换底公式统一底数;解法(1):原式=解法(2):原式=例题2:求证:分析(1):注意到等式右边是以x为底数的对数,故将化成以x为底的对数;证明:分析(2):换成常用对数证明:(略)注:在具体解题过程中,不仅能正用换底公式,还要能逆用换底公式,如:就是换底公式的逆用;例题3.已知,求的值(用a,b表示)分析:已知对数和幂的底数都是18,所以先将需求值的对数化为与已知对数同底后再求解;

3、解:,一定要求强化练习(1)(2)(3)(4)已知,试用a表示;一、归纳小结,强化思想1.对数运算性质2.换底公式:3.两个常用公式:(1)(2)4.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起了重要作用,在解题过程中应注意:(1)针对具体问题,选择好底数;(2)注意换底公式与对数运算法则结合使用;(3)换底公式的正用与逆用;二、作业布置1、补充:(1)(2)(3)已知,求(A)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。