欢迎来到天天文库
浏览记录
ID:29371252
大小:94.50 KB
页数:4页
时间:2018-12-19
《高中数学《函数模型及其应用》教案7 苏教版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数模型及其应用一、复习目标:1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。3.能利用给定的函数模型解决简单的实际问题。二、重难点:重点:掌握一次函数、二次函数、指数函数、对数函数等基本初等函数模型;培养阅读理解、建立数学模型和分析问题、解决问题的能力掌握解函数应用问题的基本步骤。难点:建立数学模型和分析问题、解决问题的能力的培养。三、教学方法:讲练结
2、合,探析归纳。四、教学过程(一)、谈新课标要求及考纲要求和高考命题考查情况,促使学生积极参与。新课标要求及考纲要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。高考命题考查情况及预测:函数应用问题是高考的热点,高考对应用题的考查即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考
3、查。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大函数应用题、探索题、开放题和信息题的考查力度,从而使高考考题显得新颖、生动和灵活。预测2010年的高考,将再现其独特的考查作用,而函数类应用题,是考查的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单
4、调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。(二)、知识梳理整合,方法定位。(学生完成复资P25填空题,教师准对问题讲评)1.我们学习过的基本初等函数主要有:一次函数、二次函数、正(反)比例函数、三角函数、指数函数、对数函数、幂函数等,我们要熟练掌握这些函数的图象与性质,以便利用它们来解决一些非基本函数的问题。2.用基本初等函数解决非基本函数问题的途径:(1)化整为零:即将非基本函数“拆”成基本初等函数,以便用已知知识解决问题;(2)图象变换:某些非基本函数的图象可看成是由基本
5、初等函数图象通过图象变换得到的,如果搞清了变换关系,便可借助基本初等函数解决非基本函数的问题。3.函数的性质主要:周期性、有界性、单调性、奇偶性等,灵活运用这些性质,可以解决方程、不等式方面的不少问题。4.在解决某些应用问题时,通常要用到一些函数模型,它们主要是:一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分式函数模型、分段函数模型等。5.重难点问题探析:1.常见函数模型的理解:(1)直线模型,即一次函数模型,其增长特点是直线上升(的系数),通过图象可很直观地认识它。(2)指数函数模型:
6、能用指数型函数表达的函数模型,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称之为“指数爆炸”。(3)对数函数模型:能用对数函数表达式表达的函数模型,其增长特点是开始阶段增长得较快,但随着的逐渐增大,其函数值变化越来越慢,常称之为“蜗牛式增长”。(4)幂函数模型:能用幂函数表示表达的函数模型,其增长情况随中的取值变化而定,常见的有二次函数模型。(5)“对勾”函数模型:形如的函数模型,在现实生活中有着广泛的应用,常利用“基本不等式”解决,有时通过利用导数研究其单调性来求最值。2.构建函数模型的基
7、本步骤:(1)审题:弄清题意,分析条件和结论,理顺数量关系,恰当选择数学模型;(2)建模:将文字语言、图形(或者数表)等转化为数学语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将利用数学知识和方法得出的结论,还原为实际问题的意义。(三)、基础巩固训练1.一批物资要用11辆汽车从甲地运到360千米外的乙地,若车速为v千米/时,则两车的距离不能小于千米.运完这批物资至少需要()。A.10小时;B.11小时;C.12小时;D.13小时[解析]C;显然11辆汽车之间的距离之
8、和为千米,所以若车速为v千米/时,11辆汽车从甲地运到360千米外的乙地,需要时间为,而,当且仅当,即时取“=”2.甲、乙两间工厂的月产值在08年元月份时相同,甲以后每个月比前一个月增加相同的产值.乙以后每个月比前一个月增加产值的百分比相同.到08年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂08年6月份的月产值大小,则有()。A.甲的产值<乙的产值;B.甲的产值=乙的产值;
此文档下载收益归作者所有