高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3

高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3

ID:29371007

大小:161.00 KB

页数:6页

时间:2018-12-19

高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3_第1页
高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3_第2页
高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3_第3页
高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3_第4页
高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3_第5页
资源描述:

《高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2用样本的数字特征估计总体的数字特征整体设计教学分析教科书结合实例展示了频率分布的众数、中位数和平均数.对于众数、中位数和平均数的概念,重点放在比较它们的特点,以及它们的适用场合上,使学生能够发现,在日常生活中某些人通过混用这些(描述平均位置的)统计术语进行误导.另一方面,教科书通过思考栏目让学生注意到,直接通过样本计算所得到的中位数与通过频率直方图估计得到的中位数不同.在得到这个结论后,教师可以举一反三,使学生思考对于众数和平均数,是否也有类似的结论.进一步,可以解释对总体众数、总体中位数和总体平均数的两种不同估计方法的特点.在知道样

2、本数据的具体数值时,通常通过样本计算中位数、平均值和众数,并用它们估计总体的中位数、均值和众数.但有时我们得到的数据是整理过的数据,比如在媒体中见到的频数表或频率表,用教科书中的方法也可以得到总体的中位数、均值和众数的估计.教科书通过几个现实生活的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.教科书通过例题向学生展示如何用样本数字特征解决实际问题,通过阅读与思考栏目“生产过程中的质量控制图”,让学生进一步体会分布的数字特征在实际中的应用.三维目

3、标1.能利用频率分布直方图估计总体的众数、中位数、平均数;能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养学生“实事求是”的科学态度和严谨的工作作风.2.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评

4、价的意识.3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.重点难点教学重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.课时安排2课时教学过程第1课时众数、中位数、平均数导入新课思路1在一次射击比赛中,甲、乙两名运动员各

5、射击10次,命中环数如下﹕甲运动员:7,8,6,8,6,5,8,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究.——用样本的数字特征估计总体的数字特征.(板书课题)思路2在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽

6、样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.推进新课新知探究提出问题(1)什么是众数、中位数、平均数?(1)如何绘制频率分布直方图?(3)如何从频率分布直方图中估计众数、中位数、平均数?活动:那么学生回忆初中所学的一些统计知识,思考后展开讨论,教师提示引导.讨论结果:(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都

7、能够为我们提供关于样本数据的特征信息.(2)画频率分布直方图的一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.(3)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.请大家翻回到课本看看原来抽样的数据,有没有2.25这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请

8、大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。