欢迎来到天天文库
浏览记录
ID:29369367
大小:110.00 KB
页数:4页
时间:2018-12-19
《高中数学 求解函数解析式教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、难点5求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.●难点磁场(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).●案例探究[例1](1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式.(2)已知二次函数f(x)=ax2+bx+c满足
2、f(1)
3、=
4、f(-1)
5、=
6、f(0)
7、=1,求f(x)的表达式.命题意图
8、:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=logax(a>1,t>0;01,x>0;09、c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、10、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x≤-1时,设f(x)=x+b∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.(2)当-111、2,即a=-1∴f(x)=-x2+2.(3)当x≥1时,f(x)=-x+2综上可知:f(x)=作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f(x)=(x≠)在定义域内恒有12、f[f(x)]=x,则m等于()A.3B.C.-D.-32.(★★★★★)设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于()A.f(x)=(x+3)2-1B.f(x)=(x-3)2-1C.f(x)=(x-3)2+1D.f(x)=(x-1)2-1二、填空题3.(★★★★★)已知f(x)+2f()=3x,求f(x)的解析式为_________.4.(★★★★★)已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_____13、____.三、解答题5.(★★★★)设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、14、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.(★★★★★)已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值
9、c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、
10、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x≤-1时,设f(x)=x+b∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.(2)当-111、2,即a=-1∴f(x)=-x2+2.(3)当x≥1时,f(x)=-x+2综上可知:f(x)=作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f(x)=(x≠)在定义域内恒有12、f[f(x)]=x,则m等于()A.3B.C.-D.-32.(★★★★★)设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于()A.f(x)=(x+3)2-1B.f(x)=(x-3)2-1C.f(x)=(x-3)2+1D.f(x)=(x-1)2-1二、填空题3.(★★★★★)已知f(x)+2f()=3x,求f(x)的解析式为_________.4.(★★★★★)已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_____13、____.三、解答题5.(★★★★)设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、14、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.(★★★★★)已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值
11、2,即a=-1∴f(x)=-x2+2.(3)当x≥1时,f(x)=-x+2综上可知:f(x)=作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f(x)=(x≠)在定义域内恒有
12、f[f(x)]=x,则m等于()A.3B.C.-D.-32.(★★★★★)设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于()A.f(x)=(x+3)2-1B.f(x)=(x-3)2-1C.f(x)=(x-3)2+1D.f(x)=(x-1)2-1二、填空题3.(★★★★★)已知f(x)+2f()=3x,求f(x)的解析式为_________.4.(★★★★★)已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_____
13、____.三、解答题5.(★★★★)设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、
14、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.(★★★★★)已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值
此文档下载收益归作者所有