欢迎来到天天文库
浏览记录
ID:29368235
大小:167.50 KB
页数:6页
时间:2018-12-19
《高中数学 3.3简单的线性规划问题详案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、简单的线性规划问题一、教学内容分析普通高中课程标准教科书数学5(必修)第三章第3课时这是一堂关于简单的线性规划的“问题教学”.线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.教科书利用生产安排的具体实例,介绍了线性规划
2、问题的图解法,引出线性规划等的概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.二、学生学习情况分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题.从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.三、设计思想本课以问题为载体,以学生为主体,以数学实验
3、为手段,以问题解决为目的,以几何画板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。四、教学目标1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情
4、推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.五、教学重点和难点求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.六、教学过程设计(一)引入(1)情景某工厂用A、B两种配件生产
5、甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h.该产每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?请学生读题,引导阅读理解后,列表→建立数学关系式→画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的
6、三个过程:列表→建立数学关系式→画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?学生不难列出函数关系式.师:这是关于变量的一次解析式,从函数的观点看的变化引起z的变化,而是区域内的动点的坐标,对于每一组的值都有唯一的z值与之对应,请算出几个z的值.填入课前发下的实验探究报告单中的第2—4列进行观
7、察,看看你有什么发现?学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.利润最大的实验探究报告单实验目的(1)求的最大值,使满足约束条件
8、(2)理解用图解法求线性规划问题的最优解,体会数形结合的思想.进行实验与收集数据(1)打开几何画板依次画出点、线构造平面区域;(2)在区域内任取一点M,度量横坐标及纵坐标,计算=的值,并制表显示在屏幕上;(3)拖动点M在区域内运动,观察度量值的变化,猜想取得最大值时点M的位置.同时请学生将有代表性的位置的数据记录在下表中的第2—5列:计数点n点的坐标直线的方程直线在y轴上的截距1234567猜想与假设____________________
此文档下载收益归作者所有