欢迎来到天天文库
浏览记录
ID:29367203
大小:165.50 KB
页数:3页
时间:2018-12-19
《高中数学 2.1不等式的证明方法之一:比较法教案 新人教a版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二讲证明不等式的基本方法课题: 第01课时不等式的证明方法之一:比较法教学目标:能熟练地运用作差、作商比较法证明不等式。教学重、难点:能熟练地运用作差、作商比较法证明不等式。教学过程:一、新课学习:要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:二、典型例题:例1、设都是正数,且,求证:。例2、若实数,求证:证明:采用差值比较法:====∴∴讨论:若题设中去掉这一限制条件,要求证的结论如何变换?教学札记例3、已知求证本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到
2、要证的不等式关于对称,不妨设,从而原不等式得证。2)商值比较法:设故原不等式得证。例4、甲、乙两人同时同地沿同一路线走到同一地点。甲有一半时间以速度行走,另一半时间以速度行走;乙有一半路程以速度行走,另一半路程以速度行走。如果,问甲、乙两人谁先到达指定地点。分析:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为。要回答题目中的问题,只要比较的大小就可以了。解:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为,根据题意有,,可得,,从而,其中都是正数,且。于是,即。从而知甲
3、比乙首先到达指定地点。讨论:如果,甲、乙两人谁先到达指定地点?三、课堂练习:1.比较下面各题中两个代数式值的大小:(1)与;(2)与.2.已知求证:(1)(2)3.若,求证四、课时小结:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。五、课后作业:课本23页第1、2、3、4题。六、教学后记:
此文档下载收益归作者所有