高中数学 1.2.4《诱导公式》2教案 新人教a版必修4

高中数学 1.2.4《诱导公式》2教案 新人教a版必修4

ID:29366427

大小:104.00 KB

页数:5页

时间:2018-12-19

高中数学 1.2.4《诱导公式》2教案 新人教a版必修4_第1页
高中数学 1.2.4《诱导公式》2教案 新人教a版必修4_第2页
高中数学 1.2.4《诱导公式》2教案 新人教a版必修4_第3页
高中数学 1.2.4《诱导公式》2教案 新人教a版必修4_第4页
高中数学 1.2.4《诱导公式》2教案 新人教a版必修4_第5页
资源描述:

《高中数学 1.2.4《诱导公式》2教案 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2.4诱导公式(一)一、学习目标1.通过本节内容的教学,使学生掌握+,-角的正弦、余弦和正切的诱导公式及其探求思路,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力;二、教学重点、难点重点:四组诱导公式及这四组诱导公式的综合运用.难点:公式(四)的推导和对称变换思想在学生学习过程中的渗透.三、教学方法先由学生自学,然后由教师设置一些问题供学生思考,在此基础上,可以通过讲授再现概念,通过练习理解概念,

2、完成教学.四、教学过程教学环节教学内容师生互动设计意图复习引入初中我们已经会求锐角的三角函数值。和30°、45°、60°终边相同的角如何表示?本节我们将研究任意角三角函数值之间的某中关系,以及如何求任意角的三角函数值。教师提问:0°、30°、45°、60°、90°的正弦、余弦、正切的三角函数值是多少?学生回答我们如何求360°、390°、-315°的三角函数值呢?温故知新公式导入1.公式(一)(其中)诱导公式(一)的作用:把把绝对值大于360º的任意角的正弦、余弦、正切的三角函数问题转化为绝对值小于360º角的正弦、余弦、正切三角函数问题,其方法是

3、先在绝对值小于360º角找出与角终边相同的角,再把它写成诱导公式(一)的形式,然后得出结果1.根据任意角的三角函数定义可知两个角若终边相同,那么它们的三角函数值也应该相同。由此导出公式(一)2.学生在单位圆中画出α角与-α2.公式(二):它说明角-与角的正弦值互为相反数,而它们的余弦值相等.这是因为,若没的终边与单位圆交于点P(x,y),则角-的终边与单位圆的交点必为P´(x,-y)(如图4-5-2).由正弦函数、余弦函数的定义,即可得sin=y,cos=x,sin(-)=-y,cos(-)=x,所以:sin(-)=-sin,cos(-)=cosα

4、公式二的获得主要借助于单位圆及正弦函数、余弦函数的定义.根据点P的坐标准确地确定点P´的坐标是关键,这里充分利用了对称性质.事实上,在图1,点P´与点P关于x轴对称.直观的对称形象为我们准确写出P´的坐标铺平了道路,体现了数形结合这一数学思想的优越性.公式(三)由公式(一)可以看出,角和加上偶数倍的所有三角函数值相等。角和加上奇数倍的正,余弦值互为相反数;角和加上奇数倍的正切函数值相等。让学生在单位圆中画出α角与-α角,观察两个角的位置关系。引导学生在单位圆中画出α角与π+α角,观察其位置关系,在结合公式(一)得到公式(三)角,观察出角的终边关于x

5、轴对称,结合三角函数定义可得到公式(二)3.利用角的终边在单位圆中的不同位置关系而得到相应的诱导公式。应用举例例1.下列三角函数值:(1)cos210º;(2)sin解:(1)cos210º=cos(180º+30º)=-cos30º=-;(2)sin=sin()=-sin=-例2.求下列各式的值:(1)sin(-);(2)cos(-60º)-sin(-210º)解:(1)sin(-)=-sin()=sin=;(2)原式=cos60º+sin(180º+30º)=cos60º-sin30º=-=0例3.化简解:原式=分析:本题是诱导公式三的巩固性练

6、习题.求解时,只须设法将所给角分解成180º+或(π+),为锐角即可.分析:本题是诱导公式二、三的巩固性练习题.求解时一般先用诱导公式二把负角的正弦、余弦化为正角的正弦、余弦,然后再用诱导公式三把它们化为锐角的正弦、余弦来求.分析:这是诱导公式一、二、三的综合应用.适当地改变角的结构,使之符合诱导公式中角的形式,是解决问题的关键.==-1例4.已知cos(π+)=-,<<2π,则sin(2π-)的值是().(A)(B)(C)-(D)±选A分析:通过本题的求解,可进一步熟练诱导公式一、二、三的运用.求解时先用诱导公式三把已知条件式化简,然后利用诱导公

7、式一和二把sin(2π-)化成-sin,再用同角三角函数的平方关系即可.课堂练习1.求下式的值:2sin(-1110º)-sin960º+答案:-2提示:原式=2sin(-30º)+sin60º-=-22.化简sin(-2)+cos(-2-π)·tan(2-4π)所得的结果是()(A)2sin2(B)0(C)-2sin2(D)-1答案:C选题目的:通过本题练习,使学生熟练诱导公式一、二、三的运用.使用方法:供课堂练习用.评估:求解本题时,在灵活地进行角的配凑,使之符合诱导公式中角的结构特点方面有着较高的要求.若只计算一次便获得准确结果,表明在利用诱

8、导公式一、二、三求解三角函数式的值方面已达到了较熟练的程度.加强格式的规范化,减少计算错误。课堂小结通过本节课的教学,我们

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。