欢迎来到天天文库
浏览记录
ID:29216196
大小:409.50 KB
页数:5页
时间:2018-12-17
《高中数学古典概型同步练习1 新课标 人教版 必修3(b)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、古典概型同步练习一、选择题1.一枚硬币连掷3次,只有一次出现正面的概率是A.B.C.D.2.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为A.B.C.D.3.在第1、3、4、路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各5、8路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于A.B.C.D.4.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为A.B.C.D.15
2、.从全体3位正整数中任取一数,则此数以2为底的对数也是正整数的概率为A.B.C.D.以上全不对二、填空题1.在20瓶墨水中,有5瓶已经变质不能使用,从这20瓶墨水中任意选出1瓶,取出的墨水是变质墨水的概率为_________.2.从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,则三个数字完全不同的概率是_________.3.从1,2,3,…,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为_________;(2)2个数字之和为偶数的概率为_________.三、解答题1..抛掷两颗骰子,求:(
3、1)点数之和出现7点的概率;(2)出现两个4点的概率.2.用红、黄、蓝三种不同颜色给下图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.3.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?4.甲、乙两人做出拳游戏(锤子、剪刀、布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.5.甲、乙两个均匀的正方体玩具,各个面上分别刻
4、有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.6.从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.如果将“每次取出后不放回”这一条件换成“每次取出后放回”呢?参考答案一、选择
5、题1.A2.B3.D4.B5.B二、填空题1.2.3.(1)(2)三、解答题1.解:作图,从下图中容易看出基本事件空间与点集S={(x,y)
6、x∈N,y∈N,1≤x≤6,1≤y≤6}中的元素一一对应.因为S中点的总数是6×6=36(个),所以基本事件总数n=36.(1)记“点数之和出现7点”的事件为A,从图中可看到事件A包含的基本事件数共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(A)=.(2)记“出现两个4点”的事件为B,则从图中可看到事件B包含的基本事件数只有1个:(4,4)
7、.所以P(B)=.2.解:所有可能的基本事件共有27个,如图所示.(1)记“3个矩形都涂同一颜色”为事件A,由图知,事件A的基本事件有1×3=3个,故P(A)=.(2)记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有2×3=6个,故P(B)=.3.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,
8、反,正),(反,正,正).4.解.:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.容易得到:(1)平局含3个基本事件(图中的△);(2)甲赢含3个基
9、本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P(A);P(B);P(C).5.解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的
此文档下载收益归作者所有