资源描述:
《用fft对信号作频谱分析报告》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案10.3 实验三:用FFT对信号作频谱分析10.3.1实验指导1.实验目的学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。2.实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是,因此要求。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的
2、包络才能逼近于连续谱,因此N要适当选择大一些。周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。3.实验步骤及内容(1)对以下序列进行谱分析。 选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(2)对以下周期序列进行谱分析。选择FFT的变换区间N为8和16两种情况
3、分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(3)对模拟周期信号进行谱分析选择采样频率,变换区间N=16,32,64精彩文档实用标准文案三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。4.思考题(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时,和的幅频特性会相同吗?为什么?N=16呢?5.实验报告要求(1)完成各个实验任务和要求。附上程序清单和有关曲线。(2)简要回答思考题。10.3.2实验程序清单%第10章实验3程序exp3.m%用FFT对信号作频谱
4、分析clearall;closeall%实验内容(1)===================================================x1n=[ones(1,4)];%产生序列向量x1(n)=R4(n)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)x3n=[xb,xa];X1k8=fft(x1n,8);%计算x1n的8点DFTX1k16=fft(x1n,16);%计算x1n的16点DFTX2k8=fft(x2n,8);%计算x1n的8点DFTX2k16=fft(x2n,16);%计算x1
5、n的16点DFTX3k8=fft(x3n,8);%计算x1n的8点DFTX3k16=fft(x3n,16);%计算x1n的16点DFT%以下绘制幅频特性曲线subplot(2,2,1);mstem(X1k8);%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k8))])subplot(2,2,3);mstem(X1k16);%绘制16点DFT的幅频特性图title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');yla
6、bel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])figure(2)subplot(2,2,1);mstem(X2k8);%绘制8点DFT的幅频特性图title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(2,2,2);mstem(X2k16);%绘制16点DFT的幅频特性图title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*
7、max(abs(X2k16))])subplot(2,2,3);mstem(X3k8);%绘制8点DFT的幅频特性图title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k8))])subplot(2,2,4);mstem(X3k16);%绘制16点DFT的幅频特性图title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');