欢迎来到天天文库
浏览记录
ID:29199737
大小:3.19 MB
页数:43页
时间:2018-12-17
《齐民友高数(下册)复习考试》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、范文范例参考《高等数学》复习考试(下册)第8章空间解析几何与向量代数一、向量及其运算1、空间直角坐标系空间直角坐标系:三条两两垂直相交于原点的坐标轴,轴、轴和轴构成右手关系。(1)学会:a)找出空间中给定点的坐标。b)找出空间中以给定为坐标的点。c)空间各部分点坐标的特点。(2)两点、的距离公式2、向量(1)向量的概念数量:只有大小;向量:既有大小又有方向。向量只有大小和方向。在空间中用有向线段表示向量。其长度表示向量的大小也称为模或范数;其方向表示向量的方向。一个向量可以放在空间中任意位置。(2)特殊向量零向量:大小为0。任意方向都是的方向。只有一个零向量。单位向量:大
2、小为1。有无穷多个单位向量。如果,则是与方向一致的单位向量,称为的单位化。(3)两向量的关系向量和有夹角。当时说;当时说。(4)向量的坐标把向量的始点放在原点,得的终点,则有的分解式其中是标准单位向量。是向量的坐标。分别是在、word版整理范文范例参考、轴上的投影;分别是在、、轴上的投影向量。向量与坐标一一对应。向量的理论分为两部分:用几何描述的向量理论和用坐标描述的向量理论。两部分理论对应地出现,互相翻译。设、,则(终点坐标减始点坐标。)始点坐标、终点坐标、向量坐标知其二求第三。(5)模和方向余弦设,则其中分别是与、、轴的夹角,它们支定了的方向。。一次性求出三个方向余弦
3、:3、向量运算(1)加减法a)几何方法两向量用平行四边形法则或三角形法则(接龙法)相加。与大小相等方向相反。。b)坐标方法设,则(2)数乘向量a)几何方法。的方向:当时与同向;当时与反向。word版整理范文范例参考b)坐标方法(3)两向量的数量积a)几何方法b)坐标方法设,则c)物理意义位移外力做的功(4)两向量的向量积是一个新的向量。a)几何方法;成右手关系。b)坐标方法设,则c)几何意义以为边的平行四边形的面积。(5)三向量的混合积a)。。b)几何意义以为边的平行六面体的体积。(6)熟悉各种运算的运算律。4、平行、垂直、共面条件(1)设。下列命题等价:a);word版
4、整理范文范例参考b)存在实数使得;c);d)。(2)下列命题等价:a);b);(3)共面。二、空间解析几何1、一般概念空间几何对象:曲面和曲线。平面是特殊的曲面,直线是特殊的曲线。空间解析几何就是用代数方程研究几何对象。几何对象和它的代数方程的关系如下:(1)上每点的坐标都满足方程;(2)坐标满足方程的点都在上。空间解析几何的主要任务:(1)根据已知条件写出几何对象的方程;(2)根据几何对象的方程分析几何对象的形状。2、空间解析几何(1)平面a)点法式方程其中是的随便一个固定的法向量,是随便固定的一点。利用条件求出即可写出平面的点法式方程。b)一般方程其中是的法向量。轴可
5、以用一般式方程写满足条件的平面方程。利用条件求出即可写出平面的一般方程。c)三点式方程word版整理范文范例参考i)取ii)写出点法式方程。d)截距式方程如果平面与轴分别交于非原点,则e)点到平面的距离f)设则(2)直线a)点向式方程其中是的随便一个固定的方向向量,是随便固定的一点。利用条件求出即可写出直线的点向式方程。b)参数方程其中是的随便一个固定的方向向量,word版整理范文范例参考是随便固定的一点,是参数。c)一般方程作为平面和的交线。d)点向式方程化为一般方程e)一般方程化点向式方程:i)求出方程组的一个解;ii)取;iii)用和写出点向式方程。f)两直线的夹角
6、直线word版整理范文范例参考与平面的夹角g)过直线的平面束用已知条件确定,从而在平面束中求出满足要求的平面。(3)常见的空间曲面(1)柱面二元方程在空间中表示母线平行于轴的柱面。(2)旋转曲面曲线绕轴旋转一周得的旋转曲面的方程为其它曲线绕其它轴转的情况类似(请你试写出来)。(3)二次曲面a)学会用“截痕法”分析曲面的形状。b)熟悉P56-P64列出的各种二次曲面及它们的方程。c)特别常用的曲面:柱面、锥面、(椭)球面、抛物面。(4)空间曲线a)空间曲线的一般方程(曲线作为两曲面的交线)参数方程word版整理范文范例参考b)由一般方程写参数方程的常用方法:先由一般方程变形
7、出;令;再进一步写出参数方程。c)曲线在坐标平面上的投影由方程消去得到在面上的投影第9章多元函数微分法及其应用一、多元函数的极限和连续性1.多元函数的极限(1)计算多元函数极限的方法:(i)要善于变形;(ii)把一组东西看出一个整体,转化为一元函数的极限,再用一元函数求极限的方法求极限。(2)证明极限不存在:举一些的方式(比如),使极限不存在或与方式()有关。2.多元函数的连续性(1)证明在点不连续:(i)用前面方法证明不存在;或(ii)求出。(2)证明在点连续就是证明。二、偏导数和全微分1.偏导数(1)在点的偏导数分两步:(
此文档下载收益归作者所有