资源描述:
《高中数学第3章空间向量与立体几何3.2.3空间的角的计算学案苏教版选修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.3 空间的角的计算1.理解空间三种角的概念,能用向量方法求线线、线面、面面的夹角.(重点、难点)2.二面角的求法.(难点)3.空间三种角的范围.(易错点)[基础·初探]教材整理 空间角的向量求法阅读教材P106~P108的部分,完成下列问题.1.两条异面直线所成角的向量求法若异面直线l1,l2的方向向量分别为a,b,l1,l2所成的角为θ,则cosθ=
2、cosa,b
3、.2.直线和平面所成角的向量求法设直线l的方向向量为a,平面α的法向量为n,a与n的夹角为θ1,l与α所成的角为θ2,则sinθ2=
4、
5、cos_θ1
6、=. (1) (2)3.二面角的向量求法设二面角αlβ的大小为θ,α,β的法向量分别为n1,n2,则
7、cosθ
8、=
9、cosn1,n2
10、=,θ取锐角还是钝角由图形确定.图32191.判断(正确的打“√”,错误的打“×”)(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)若向量n1,n2分别为二面角的两半平面的法向量,则二面角的平面角的余弦值为cos〈n1,n2〉=.( )(3)直线的方向向量与平面的法向量所成的角就是直线与平面所成的角.( )(4)二面角的
11、大小与其两个半平面的法向量的夹角相等或互补.( )【答案】 (1)× (2)× (3)× (4)√2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角为________.【解析】 由题意得,直线l与平面α的法向量所在直线的夹角为60°,∴直线l与平面α所成的角为90°-60°=30°.【答案】 30°3.异面直线l与m的方向向量分别为a=(-3,2,1),b=(1,2,0),则直线l与m所成的角的余弦值为__________.【解析】 ∵a·b=-3+4=1,
12、a
13、==,
14、b
15、=
16、,∴cos〈a,b〉===.【答案】 4.已知二面角αlβ,α的法向量为n=(1,2,-1),β的法向量为m=(1,-3,1),若二面角αlβ为锐角,则其余弦值为________.【解析】 cos〈n,m〉===-.又因二面角为锐角,所以余弦值为.【答案】 [质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: [小组合作型]求两条异面直线所成的角 (1)如图3220,在直三棱柱ABCA1B1C1中,∠ACB=90°,AC=BC=2,AA1=4
17、,若M,N分别是BB1,CC1的中点,则异面直线AM与A1N所成角的大小为________.【导学号:09390086】图3220(2)在三棱锥DABC中,DA⊥平面ABC,DA=4,AB=AC=2,AB⊥AC,E为BC中点,F为CD中点,则异面直线AE与BF所成角的余弦值为________.【精彩点拨】 (1)思路一:以,,为基向量,表示,,求cos〈,〉的余弦值;思路二:以,,分别为x轴,y轴,z轴建立空间直角坐标系,求出相关向量的坐标,利用坐标求cos〈,〉.(2)题思路如(1)题.【自主解答】 (1)法
18、一:=-,=+=--,∴·=·=-×16+4=0,∴⊥,即异面直线AM与A1N所成的角为90°.法二:如图所示,建立空间直角坐标系:则A1(2,0,0),N(0,0,2),A(2,0,4),M(0,2,2),∴=(-2,0,2),=(-2,2,-2),∴·=4+0-4=0,即⊥,故异面直线A1N与AM所成的角为90°.(2)法一:如图所示,=(+),=-=+-.·=·=-×4+×4=-1,又易知
19、
20、=,
21、
22、2=×16+×4+4=9,∴
23、
24、=3.∴cos〈,〉==-,则异面直线AE与BF所成角的余弦值为.法二:建
25、立如图所示的空间直角坐标系,则A(0,0,0),E(1,1,0),B(2,0,0),F(0,1,2),∴=(1,1,0),=(-2,1,2),∴·=-2+1=-1.∵
26、
27、=,
28、
29、=3,∴cos〈,〉===-.所以异面直线AE与BF所成角的余弦值为.【答案】 (1)90° (2)1.利用数量积或坐标方法将异面直线所成的角转化为两直线的方向向量所成的角,若求出的两向量的夹角为钝角,则异面直线所成的角应为两向量夹角的补角.2.向量法求异面直线所成角的步骤(1)建立坐标系(或选取基向量),求直线方向向量坐标(或用基向量
30、线性表示);(2)求〈a,b〉;(3)利用cosθ=
31、cos〈a,b〉
32、,求θ.[再练一题]1.如图3221所示,三棱柱OABO1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=,求异面直线A1B与AO1所成角的余弦值的大小.图3221【解】 建立如图所示的空间直角坐标系,则O(0,0,0),O1(0,1,),A(,0,0),A