高中数学 3.2.2古典概型学案2 苏教版必修3

高中数学 3.2.2古典概型学案2 苏教版必修3

ID:29145362

大小:578.50 KB

页数:3页

时间:2018-12-17

高中数学 3.2.2古典概型学案2 苏教版必修3_第1页
高中数学 3.2.2古典概型学案2 苏教版必修3_第2页
高中数学 3.2.2古典概型学案2 苏教版必修3_第3页
资源描述:

《高中数学 3.2.2古典概型学案2 苏教版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第33课时7.2.2古典概型知识网络基本事件等可能事件古典概型计算公式学习要求1、进一步掌握古典概型的计算公式;2、能运用古典概型的知识解决一些实际问题。【课堂互动】自学评价例1将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?【解】(1)将骰子抛掷1次,它出现的点数有这6中结果。先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又都有6种可能的结果,于是一共有种不同的结果;(2)第1次抛掷,向上的点数为这6个数中的某一个

2、,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有种不同的结果.(3)记“向上点数和为3的倍数”为事件,则事件的结果有种,因为抛两次得到的36中结果是等可能出现的,所以所求的概率为答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有种;点数和是的倍数的概率为;说明:也可以利用图表来数基本事件的个数:例2用不同的颜色给下图中的3个矩形随机的涂色,每个矩形只涂一种颜色,求(1)3个矩形颜色都相同的概率;(2)3

3、个矩形颜色都不同的概率.【分析】本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)【解】基本事件共有个;(1)记事件=“3个矩形涂同一种颜色”,由上图可以知道事件包含的基本事件有个,故(2)记事件=“3个矩形颜色都不同”,由上图可以知道事件包含的基本事件有个,故答:3个矩形颜色都相同的概率为;3个矩形颜色都不同的概率为.【小结】古典概型解题步骤:⑴阅读题目,搜集信息;⑵判断是否是等可能事件,并用字母表示事件;⑶求出基本事件总数和事件所包含的结果数;⑷用公式求出概率并下结论.【精典范例】例3现

4、有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.【分析】(1)为返回抽样;(2)为不返回抽样.【解】(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)==0.512.(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记

5、录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=≈0.467.解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×

6、7×6÷6=56,因此P(B)=≈0.467.【小结】关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.例4一次投掷两颗骰子,求出现的点数之和为奇数的概率.解法1 设表示“出现点数之和为奇数”,用记“第一颗骰子出现点,第二颗骰子出现点”,.显然有36个等可能基本事件.其中包含的基本事件个数为18个,故.  解法2 若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们也是等可能的.基本事件总

7、数,包含的基本事件个数,故 解法3 若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},则基本事件总数,所含基本事件数为,故.追踪训练1、据人口普查统计,育龄妇女生男生女是近似等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率约是(C)A.B.C.D.2、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是.3、从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为.4、已知集合A=,在平面直角坐标系中,

8、点M的坐标为,其中,且,计算:(1)点M不在轴上的概率;(2)点M在第二象限的概率.解:(1)满足,的点M的个数有109=90,不在轴上的点的个数为99=81个,∴点M不在轴上的概率为:;(2)点M在第二象限的个数有54=20个,所以要求的概率为.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。