高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1

高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1

ID:29145308

大小:230.50 KB

页数:6页

时间:2018-12-17

高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1_第1页
高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1_第2页
高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1_第3页
高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1_第4页
高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1_第5页
资源描述:

《高中数学 3.2.1几类不同增长的函数模型课时作业 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§3.2 函数模型及其应用3.2.1 几类不同增长的函数模型课时目标 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异.结合实例体会直线上升、指数爆炸、对数增长等不同函数模型增长的含义.2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用.3.初步学会分析具体的实际问题,建模解决实际问题.1.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性________________________图象的

2、变化随x的增大逐渐变“________”随x的增大逐渐趋于______随n值而不同2.三种函数模型的增长速度比较(1)对于指数函数y=ax(a>1)和幂函数y=xn(n>0)在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内,ax会小于xn,但由于________的增长快于________的增长,因此总存在一个x0,当x>x0时,就会有__________.(2)对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,尽管在x的一定范围内,logax可能会大于xn,但由于______

3、______的增长慢于________的增长,因此总存在一个x0,当x>x0时,就会有______________.一、选择题1.今有一组数据如下:t1.993.04.05.16.12v1.54.407.51218.01现准备了如下四个答案,哪个函数最接近这组数据(  )A.v=log2tB.v=C.v=D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图象表示为(  )3.某公司为了适应市场需求对产品结构做了重大调整

4、,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用(  )A.一次函数B.二次函数C.指数型函数D.对数型函数4.某自行车存车处在某天的存车量为4000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为(  )A.y=0.2x(0≤x≤4000)B.y=0.5x(0≤x≤4000)C.y=-0.1x+1200(0≤x≤4000)D.y=0.1x+1200(0≤x≤4000)5.已知

5、f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有(  )A.f(bx)≥f(cx)B.f(bx)≤f(cx)C.f(bx)

6、毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是____________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入

7、x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b=,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=(t∈N),销售量g(t)与

8、时间t满足关系g(t)=-t+(0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.能力提升11.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。