欢迎来到天天文库
浏览记录
ID:29119971
大小:256.00 KB
页数:9页
时间:2018-12-16
《-元二次方程专题能力培优》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、资料2.1一元二次方程专题一利用一元二次方程的定义确定字母的取值1.已知是关于x的一元二次方程,则m的取值范围是()A.m≠3B.m≥3C.m≥-2D.m≥-2且m≠32.已知关于x的方程,问:(1)m取何值时,它是一元二次方程并写出这个方程;(2)m取何值时,它是一元一次方程?专题二利用一元二次方程的项的概念求字母的取值3.关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值.4.若一元二次方程没有一次项,则a的值为.专题三利用一元二次方程的解的概念求字母、代数式5.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b值为( )A.-1
2、B.0C.1D.26.若一元二次方程ax2+bx+c=0中,a-b+c=0,则此方程必有一个根为..资料7.已知a是一元二次方程x2-2013x+1=0的解,求代数式值.知识要点:1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.2一元二次方程的解法专题一利用配方法求字母的取值或者求代数式的极值1.若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为( )A.
3、-9或11B.-7或8C.-8或9C.-8或92.如果代数式x2+6x+m2是一个完全平方式,则m=.3.用配方法证明:无论x为何实数,代数式-2x2+4x-5的值恒小于零.专题二利用△判定一元二次方程根的情况或者判定字母的取值范围4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是( )A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的方程kx2+3x+2=0有实数根,则k的取值范围是()6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤
4、凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结.资料论正确的是( )A.a=cB.a=bC.b=cD.a=b=c专题三解绝对值方程和高次方程7.若方程(x2+y2-5)2=64,则x2+y2=.8.阅读题例,解答下题:例:解方程x2-
5、x-1
6、-1=0.解:(1)当x-1≥0,即x≥1时,x2-(x-1)-1=0,∴x2-x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x-1<0,即x<1时,x2+(x-1)-1=0,∴x2+x-2=0.解得x1=1(不合题设,舍去),x2=-2.综上所述,原方程的解是x=1或x=-2.依
7、照上例解法,解方程x2+2
8、x+2
9、-4=0.专题四一元二次方程、二次三项式因式分解、不等式组之间的微妙联系9.探究下表中的奥秘,并完成填空:专题五利用根与系数的关系求字母的取值范围及求代数式的值11.设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= .12.(2012·怀化)已知x1、x2是一元二次方程的两个实数根,⑴是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;⑵求使(x1+1)(x2+1)为负整数的实数a的整数值.13.(1)教材中我们学习了:若关于x的一元二次方程ax2+b
10、x+c=0的两根为x1、x2,x1+x2=-,x1·x2=.根据这一性质,我们可以求出已知方程关于x1、x2的代数式的值.例如:已知x1、x2为方程x2-2x-1=0的两根,则:(1)x1+x2=____,x1·x2=____,那么x12+x22=(x1+x2)2-2x1·x2=____..资料请你完成以上的填空.(2)阅读材料:已知,且.求的值.解:由可知.∴.∴.又且,即.∴是方程的两根.∴.∴=1.(3)根据阅读材料所提供的的方法及(1)的方法完成下题的解答.已知,且.求的值.知识要点:1.解一元二次方程的基本思想——降次,解一元二次方程的常用方法:直接开平方法、配方法、公
11、式法、因式分解法.2.一元二次方程的根的判别式△=b-4ac与一元二次方程ax2+bx+c=0(a≠0)的根的关系:当△>0时,一元二次方程有两个不相等的实数解;当△=0时,一元二次方程有两个相等的实数解;△<0时,一元二次方程没有实数解.3.一元二次方程ax2+bx+c=0(a≠0)的两根x1、x2与系数a、b、c之间存在着如下关系:x1+x2=﹣,x1•x2=.2.3一元二次方程的应用专题一、利用一元二次方程解决面积问题1.在高度为2.8m的一面墙上,准备开凿一个矩形窗户.现
此文档下载收益归作者所有