欢迎来到天天文库
浏览记录
ID:29107273
大小:82.00 KB
页数:3页
时间:2018-12-16
《中考复习教案教案:第18课时分式方程2(1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品教学目标:1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.教学重点:列分式方程解有关行程问题.教学难点:如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.3.疑点:对于列分式方程解应用题,
2、学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.教学过程:在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激
3、发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.一、新课引入:1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?3.以前所学过的列方程解应用题的步骤有哪些?通过
4、对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题——本节课所学的内容.通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.二、新课讲解:精品例1 甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?分析:(1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系
5、在题中的隐含.(2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙从(3)如果设乙每小时走x千米,那么甲每小时走(x+1)千米,解: 设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得去分母,整理,得x2+x-30=0.解这个方程,得x1=5,x2=-6.经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.答:甲每小时走6千米,乙每小时走5千米.在本题中,采取的方法应为教师引导学生分析,列出方程以至于解出方程.在分析过程中和解题过程中,教师应强调单位的统一以及检验的位置.例2 一小艇在江面上顺流航行63千米到目的地,然后
6、逆流回航到出发地,航行时间共5小时20分.已知水流速度为每小时3千米,小艇在静水中的速度是多少?小艇顺流航行时间和逆流回航时间各是多少?分析:(1)顺水速度=在静水中速度+水速逆水速度=在静水中速度-水速(2)题目中的相等关系:顺流航行时间+逆流航行时间=5小时20分.(3)设小艇在静水中速度为x千米/小时,则顺流航行速度为x+3(千米/时),逆流航行速度为x-3(千米/时),小艇顺流航行63千解:设小艇在静水中的航行速度为x千米/时,则顺流航行的速度为(x+3)千米/时,逆流航行的速度为(x-3)千米/时,根据题意,得去分母,整理得8x2-189x-72=0.精品∴ x=24.答
7、:小艇在静水中的速度为24千米/时,顺流航行2小时20分,逆流回航3小时.本题处理的方式应与上题相同.巩固练习:教材P.49中6题.三、课堂小结:对于本节小结,应该是学生在教师的指导下进行的.本节内容的小结应从两个方面进行总结:(1)本节课的内容是什么?(2)关系到本节课内容的因素是什么?本节课,我们在学习了分式方程基础上,来解决实际问题的应用之一——行程问题,而解行程问题的关键是将路程、时间、速度三者之间的关系运用到隐含在题目中的相等关系中去,以便列出方程而解决问题
此文档下载收益归作者所有