欢迎来到天天文库
浏览记录
ID:29107207
大小:70.00 KB
页数:3页
时间:2018-12-16
《中考复习教案-函数及其图像专题-函数的图象1+教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品 一、素质教育目标(一)知识教学点:1.使学生初步认识函数的图象;2.使学生能通过函数的对应值表,了解函数的列表表示法;3.通过函数的图象,了解函数的图象表示法;4.通过函数的多种表示法,使学生加深对函数意义的了解.(二)能力训练点:1.通过函数的三种表示法的介绍,培养学生分情况、分类别讨论问题的方法;2.通过函数图象的教学,向学生渗透数形结合的思想方法.(三)德育渗透点:通过函数的教学,使学生体会事物是互相联系的和有规律地变化着的.二、教学重点、难点和疑点1.教学重点:在了解列表或画图方法表示函数的基础上,会用描点法画出函数的图象
2、.因为本章主要学习函数的图象,而以后画函数的图象都是用描点法.2.教学难点:正确而合理地选择列表数值,因为描点法作图的关键是找准点的位置,而点的位置就是由自变量的值和它对应的函数值确定的.三、教学步骤(一)明确目标提问:1.上节课我们学习了一种表示函数的方法,是什么?2.它是不是唯一的表示函数的方法呢?这节课我们就来学习函数的其它表示方法以及怎样表示.(板书课题)(二)整体感知看实例:一种豆子每千克售价2元,即单价是2元/千克,豆子总的售价y(元)与所售豆子的数量x(千克)之间的函数关系式应怎样表示?你能否指出其中的自变量和函数?(出示
3、幻灯)这两问可分别由两名同学来完成,适当找层次较低的学生来回答,这样既可以给学生一次成功的表现机会,又可以体现出面向全体学生.提问:1.你能否指出这个函数中自变量的取值范围?这个问题主要是为了明确列表时从哪个数值开始.2.你能算出当x=0,0.5,1.5,2,2.5,3时的函数值吗?由学口答完成.这两个问题既巩固了上节课的知识,又直接为下面的列表服务.用幻灯出示下表:精品上面,通过列表给出x与y的对应值,或可以表示y与x的函数关系,这种表示函数的方法叫做列表法.提问:你认为用列表法表示函数有什么样的特征?由学生讨论上述问题,在讨论的过程
4、中,学生自然要与解析法相对比,可以使学生进一步分清各种表示法在不同情况下的优与劣,培养学生看事物要深刻,而且一分为二的辩证唯物主义观点.答:(1)直观,可直接从表中找到x与y的对应值;(2)局限性,只能表示函数的一部分.(特殊情况除外)提问:1.看上表,给出的实际是一列实数对,如果规定把自变量x的值写在前面,函数y的值写在后面,我们就得到一列什么样的实数对?2.想一想,有序实数对与什么有关?有什么样的关系?通过这两个问题,可使学生很自然地把上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系.3.能否把上表中给出的有
5、序实数对在坐标平面内描出相应的点?此图可由一名同学板演,其他同学在练习本上完成,互相批改.注意:(1)若自变量的值与函数值的差别较大,可以在x轴与y轴上用不同的长度表示不同的单位;(2)在表中给出的数越多,相应地在坐标平面内描出的点也就越多.下面我们来看一个简单的函数y=x.提问:1.能否指出自变量的取值范围?2.能否列出x与y的对应值表?你认为选什么样的自变量的值较好?讨论,回答.这个问题主要是让学生明确在列表时,为了以后描点的方便选什么样的值较好.答:(1)选绝对值较小的数;(2)选整数.3.你能否根据表中给出的有序实数对,在直角坐
6、标系中描出相应的点?一名同学板演,最好有事先准备好的专用的画有坐标平面的小黑板,其他同学在练习本上完成.学生描完点之后,教师可根据情况进行总结评价,然后提问:你认为我们可以根据解析式得到多少有序实数对?对应地可描出坐标平面内的多少点?你试试看,这无数多点组成了怎样的图形?为什么?精品后两问可由学生讨论之后再回答,总结:因为图形上的每一点到x轴与y 轴的距离相等(x=y),由几何知识可知,这样的点组成的图形是以这两条轴为边组成的角的角平分线,因此这个图形是一条直线.这条直线就是函数y=x的图象.教师边讲边板书:一般地,对于一个函数,如果把
7、自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.我们也可以用图象来表示一个函数,把这种方法叫做图象法.提问:图象法表示函数有怎样的特征?可让学生讨论回答.答:(1)形象,直观;(2)可以表示事物变化的全过程;(3)有局限性,只能画出函数图象的一部分.(特殊情况除外)提问:在讨论列表法和图象法时,说到它们的局限性时,我们都说到了特殊情况除外,能不能不说“特殊情况除外”呢?提这个问题主要是为了扩展学生的思维,加强学生思维的深刻性.由学生讨论,举适当的例子回答上述问题.
8、只要想到自变量的取值范围有限即可.练习第1题只要求填表、描点.(三)重点、难点的学习与目标完成过程本节课的重点是用描点法画出函数的图象,为了解决这个难点,在本节课一开始,就用实际问题给出了用列表法表示函数.
此文档下载收益归作者所有