中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1

中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1

ID:29107176

大小:83.50 KB

页数:4页

时间:2018-12-16

中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1_第1页
中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1_第2页
中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1_第3页
中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1_第4页
资源描述:

《中考复习教案-函数及其图像专题-平面直角坐标系2+教案(1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品  一、素质教育目标(一)知识教学点:1.了解平面内的点与有序实数对之间的一一对应关系;2.使学生进一步熟悉根据坐标确定点和由点求得坐标的方法;3.理解各象限内及坐标轴上的点的坐标的特征,会用象限或坐标轴说明直角坐标系内点的位置,能根据点的位置确定横、纵坐标的符号;4.理解点关于x轴、y轴、原点的对称点的意义,并能求出任一点的对称点的坐标.(二)能力训练点:1.让学生运用数形结合的思想方法解决有关问题;2.通过平面内的点与有序实数对之间的关系的教学,向学生进行对应的思想的教育;3.培养学生的观察、分析、概括、总结的能力及动手能力.二、教学重点、难点和疑点本节课

2、的教学重点是掌握平面内不同位置的点的坐标的特点.因为根据点的坐标的特点就可以确定点,而确定点是研究函数图象的基础.本节课的教学难点是总结出不同位置的点的坐标的特点及求一个点的对称点的方法.因为这需要学生通过观察,分析才能加以归纳、总结.三、教学步骤(一)明确目标上节课我们学习了用有序实数对可以表示坐标平面内的点,那么有序实数对与坐标平面内的点有什么关系、坐标平面内的点的坐标有何特点呢?这就是我们这节课要研究的问题.(二)整体感知:提问:1.在直角坐标系中,找出下列各点:A(2,3);B(3,2);C(-2,3);D(2,-3);E(-2,-3).由一名同学在黑板上

3、板演,其他同学在纸上完成,把同学完成的试卷收上来,然后看黑板上的解答,纠正其中的问题.2.在坐标平面内不同的点的坐标是否相同?不同的坐标所表示的点是否相同?那么点的坐标是用什么表示的?(答:有序实数对)你认为坐标平面内的任意一点与有序实数对有什么关系?由学生讨论回答,若讨论时遇到困难,可以提示:数轴上的点与实数有什么关系?教师加以总结:对于坐标平面内的任意一点A,我们可以确定它的坐标,并且这个坐标是唯一的,这就说,对于坐标平面内任意一点,都有唯一的一对有序实数对和它对应;反过来,给出任意一对有序实数对,例如(3,2),我们都可以在坐标平面内描出一个点,这个点也是唯

4、一的,这又说明,对于任意一对有序实数对,在坐标平面内都有唯一的点与它对应.综上所述,坐标平面内的点与有序实数对是一一对应的.(板书)精品提问:能否在图中指出各象限?(用练习中已画的平面直角坐标系图)由一名同学上黑板指出,其他同学给予评价.然后出示例题:(出示幻灯)例1 指出下列各点所在的象限或坐标轴:A(-2,3);B(1,-2);C(-1,-2);D(3,2);E(-3,0);F(0,1).分析:要解决这个问题,首先要画出直角坐标系,描出给出的各点;然后,按照图中所描的点的位置,给出答案.提问:题中为什么要写出“所在的象限或坐标轴”?明确坐标轴上的点不属于任何象

5、限.由学生完成例题之后,加以评价,然后提问:(1)坐标轴上的点的坐标有什么特征?上节课已介绍过,学生可以很容易回答.(2)各象限中点的坐标有何特征?(若学生对此问法不太清楚,可换一种问法:坐标是由一对有序实数组成的,这对有序实数因为点的位置在不同的象限各是什么符号的数?)学生讨论之后,结合直角坐标系图,让学生独立完成下面的图表.(出示幻灯)根据点所在象限,用“+.-”号填表:提问:任一点P(x,y)(1)如果P(x,y)在第二象限,那么x,y分别是正数还是负数?(2)如果x>0,y<0,P(x,y)在第几象限?(向学生介绍这是一种表示不定点的方法)通过这两个问题,

6、使学生能从正、反两个方面理解坐标平面内点的坐标的特征.例2 求出点P(-3,-2)关于x轴、y轴、原点的对称点.用提问的方式加以分析:(1)关于x轴、y轴对称是哪种对称?应怎样通过画图作出对称点?(2)关于原点对称是哪种对称?应怎样通过画图作出对称点?(这两个问题若学生有遗忘,可适当加以提示.)(3)你能否在练习本上画出这些点?可由教师或一名同学在黑板上画图,其他同学在练习本上完成,然后看黑板上的图加以评价、总结、提出问题:(用P1,P2,P3表示点P关于x轴,y轴,原点的对称点)精品(1)能否说出P1,P2,P3的坐标?你的根据是什么?(根据轴对称及中心对称的定

7、义)(2)观察这三点的坐标与P点的坐标有怎样的关系?(把这四点的坐标都写在图上以便观察)先让学生讨论,然后加以总结:对于P(x,y).(1)关于x轴对称,则横坐标不变,纵坐标变为相反数,即P1(x,-y);(2)关于y轴对称,则纵坐标不变,横坐标变为相反数,即P2(-x,y);(3)关于原点对称,则横、纵坐标都变为相反数,即P3(-x,-y);提问:点P(x,-y)关于x轴、y轴、原点的对称点的坐标各是什么?这个问题是直接运用上面总结而得的规律,使学生能正确地运用该规律,并理解之.练习:p.10页第1,2题,互相评价.P.11中4题填在书上,口答互相评价.补充:如

8、果点M(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。