2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理

2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理

ID:29079513

大小:258.50 KB

页数:10页

时间:2018-12-16

2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理_第1页
2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理_第2页
2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理_第3页
2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理_第4页
2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理_第5页
资源描述:

《2018高考数学异构异模复习 第八章 立体几何 课时撬分练8.3 直线、平面平行的判定与性质撬题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2018高考数学异构异模复习考案第八章立体几何课时撬分练8.3直线、平面平行的判定与性质撬题理时间:45分钟基础组1.[2016·武邑中学预测]已知m,n为两条不同的直线,α,β为两个不同的平面,则下列为真命题的是(  )A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β答案 A解析 选项A中,如图①,n∥m,m⊥α⇒n⊥α一定成立,选项A正确.选项B中,如图②,α∥β,m⊂α,n⊂β,m与n互为异面直线,∴选项B不正确.选项C中,如图③,m⊥α,m⊥n,n⊂α,∴选项C不正确.选项D

2、中,如图④,m⊂α,n⊂α,m∥β,n∥β,但α与β相交,∴选项D不正确.2.[2016·衡水二中模拟]直线m,n均不在平面α,β内,给出下列命题:①若m∥n,n∥α,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥n,n⊥α,则m∥α;④若m⊥β,α⊥β,则m∥α.其中正确命题的个数是(  )A.1B.2C.3D.4答案 D解析 对命题①,根据线面平行的判定定理知,m∥α;对命题②,如果直线m与平面α相交,则必与平面β相交,而这与α∥β矛盾,故m∥α;对命题③,在平面α内取一点A,设过A,m的平面γ与平面α相交于直线b.因为n⊥α,所以n⊥b,又m⊥n,所以m

3、∥b,则m∥α;对命题④,设α∩β=l,在α内作m′⊥β,因为m⊥β,所以m∥m′,从而m∥α.故四个命题都正确.3.[2016·枣强中学期末]已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是(  )A.若m⊥α,m⊥β,则α∥βB.若α∥γ,β∥γ,则α∥βC.若m⊂α,n⊂β,m∥n,则α∥βD.若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β答案 C解析 由线面垂直的性质可知A正确;由两个平面平行的性质可知B正确;由异面直线的性质易知D也是正确的;对于选项C,α,β可以相交、可以平行,故C错误,选C.4.[2016·衡

4、水二中仿真]平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是(  )A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析 充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.5.[2016·枣强中学期中]如图,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 M位于线

5、段FH上解析 连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只要M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.(答案不唯一)6.[2016·冀州中学期末]给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题为________.答案 ③解析 ①中当α与β不平行时,也能存在符合题意的l、m.②中l与m也可能异面.③中⇒l∥m,同理l∥n,则m∥n,正确.7.

6、[2016·衡水中学预测]如图所示,四棱锥P-ABCD的底面是一个直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD.若E为PC的中点,则BE与平面PAD的位置关系是________.答案 平行解析 取PD的中点F,连接EF,AF.在△PCD中,EF∥CD,且EF=CD.∵AB∥CD,且CD=2AB,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴EB∥AF.又∵EB⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.8.[2016·枣强中学热身]如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E

7、是侧棱PA上的中点.(1)求证:PC∥平面BDE;(2)求四棱锥P-ABCD的体积.解 (1)证明:连接AC交BD于点O,连接OE,如图:∵四边形ABCD是正方形,∴O是AC的中点.又E是PA的中点,∴PC∥OE.∵PC⊄平面BDE,OE⊂平面BDE,∴PC∥平面BDE.(2)∵PA⊥平面ABCD,∴VP-ABCD=S正方形ABCD·PA=×12×2=,∴四棱锥P-ABCD的体积为.9.[2016·衡水中学猜题]已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′

8、上,且AE=C′F=2.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。