资源描述:
《放缩法技巧及经典例题讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、放缩法技巧及经典例题讲解一.放缩技巧所谓放缩的技巧:即欲证,欲寻找一个(或多个)中间变量,使,由到叫做“放”,由到叫做“缩”.常用的放缩技巧(1)若(2),,,(3)(4)(5)若,则(6)(7)(因为)(7)或(8),(9),(10)【经典回放】例1、设数列的前项和为.已知,,.(Ⅰ)求的值;(Ⅱ)求数列的通项公式;(Ⅲ)证明:对一切正整数,有.【解析】(Ⅰ)依题意,,又,所以;(Ⅱ)当时,,两式相减得整理得,即,又故数列是首项为,公差为的等差数列,所以,所以.(Ⅲ)当时,;当时,;当时,,此时综上,对一切正整数,有.例2:【经典例题】例1、设数列满足(1)求的通项公式;(2)若求
2、证:数列的前n项和分析:(1)此时我们不妨设即与已知条件式比较系数得又是首项为2,公比为2的等比数列。.(3)由(1)知.当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.).方法二:在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我们看:易验证当n=1,2时.综上例2、已知正项数列满足(1)判断数列的单调性;(2)求证:分析:(1),即故数列{}为递增数列.(2)不妨先证再证:原解答中放缩技巧太强,下面给出另一种证法.当时,.易验证当n=
3、1时,上式也成立.综上,故有成立.经典方法归纳:一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.例2、已知求证:证明:若多项式中加上一些正的值,多项式的值变大,多项式中加上
4、一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化二.先放缩再求和1.放缩后成等差数列,再求和例1.已知各项均为正数的数列的前项和为,且.(1)求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;例2.已知数列满足:.求证:.证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.2.放缩后成等比数列,再求和例2.(1)
5、设a,n∈N*,a≥2,证明:;(2)等比数列{an}中,,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:.解:(1)当n为奇数时,an≥a,于是,.当n为偶数时,a-1≥1,且an≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>Pj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.(1)求a4、a5,并写出an的表达式;(2)令,
6、证明解(1)由已知得,.(2)因为,所以.又因为,所以 =.综上,.注:常用放缩的结论:(1)(2).三.裂项放缩1、若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例1.已知n∈N*,求。证明:因为,则,证毕。例2、已知an=n,求证:<3.证明:=<1+<1+==1+(-)=1+1+--<2+<3.本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.例3.已知且,求证:对所有正整数n都成立。证明:因为,所以,又,所以,综合知结论成立。2、固定一部分项,放缩另外的项;例4、求证:证明:此题采用了从第三项开始拆项放缩
7、的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。例5、设求证:解析又(只将其中一个变成,进行部分放缩),,于是例10设数列满足,当时证明对所有有;(02年全国高考题)解析用数学归纳法:当时显然成立,假设当时成立即,则当时,成立。利用上述部分放缩的结论来放缩通项,可得注:上述证明用到部分放缩,当然根据不等式的性质也可以整体放缩:;证明就直接使用了部分放缩的结论。3.添减项放缩例11设,求证.简