欢迎来到天天文库
浏览记录
ID:29045908
大小:366.50 KB
页数:7页
时间:2018-12-16
《2018届高考数学二轮复习 小题标准练(四)理 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考小题标准练(四)满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知R是实数集,M=,N={y
2、y=+1},则N∩(M)=( )A.(1,2)B.[0,2]C.∅D.[1,2]【解析】选D.因为<1,所以>0,所以x<0或x>2,所以M={x
3、x<0或x>2},因为y=+1≥1,所以N={y
4、y≥1},所以N∩(M)=[1,2].2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.(2-i)2=4-4i+i
5、2=3-4i,对应的点为(3,-4),位于第四象限.3.设命题p:∃α0,β0∈R,cos(α0+β0)=cosα0+cosβ0;命题q:∀x,y∈R,且x≠+kπ,y≠+kπ,k∈Z,若x>y,则tanx>tany.则下列命题中真命题是( )A.p∧qB.p∧(非q)C.(非p)∧qD.(非p)∧(非q)【解析】选B.当α0=,β0=-时,命题p成立,所以命题p为真命题;当x,y不在同一个单调区间内时命题q不成立,命题q为假命题.故p∧(非q)为真命题.4.等比数列的前n项和为Sn,且4a1,2a2,a3成等差数列,若a1=1,则S4=( )A.7B.8C.15D.16【解析
6、】选C.因为4a1,2a2,a3成等差数列,所以=2a2,所以=2a1q,所以=2q,所以q=2,所以S4===15.5.执行如图所示的程序框图,若输入n的值为8,则输出s的值为( )A.4B.8C.16D.32【解析】选B.当i=2,k=1时,s=1×(1×2)=2;当i=4,k=2时,s=×(2×4)=4;当i=6,k=3时,s=×(4×6)=8;当i=8时,ib,则下列不等式成立的是( )A.a2>b2B.<1C.lg(a-b)>0D.<【解析】选D.因为0<<1,所以y=是减函数,又a>b,所以<.7.已知奇函数f(
7、x)=5x+sinx+c,x∈(-1,1),如果f(1-x)+f(1-x2)<0,则实数x的取值范围为( )A.(0,1)B.(1,)C.(-2,-)D.(1,)∪(-,-1)【解析】选B.因为f′(x)=5+cosx>0,可得函数f(x)在(-1,1)上是增函数,又函数f(x)为奇函数,所以由f(x)=5x+sinx+c及f(0)=0可得c=0,由f(1-x)+f(1-x2)<0,可得f(1-x)<-f(1-x2)=f(x2-1),从而得解得18、析】选C.由三视图知,几何体为圆柱的一部分,且圆柱的高为3,底面圆的半径为2,底面扇形的圆心角为,所以几何体的体积V=π×22×3=2π.9.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为( )A.(x-1)2+(y-1)2=5B.(x+1)2+(y+1)2=5C.(x-1)2+y2=5D.x2+(y-1)2=5【解析】选A.圆心到这两条直线的距离相等d==,解得a=1,d=,所以圆的标准方程为(x-1)2+(y-1)2=5.10.已知函数y=f(x)(x∈R)满足f(x+3)=f(x+1)且当x∈[-1,1]时,f(x)=x2,则y=9、f(x)与y=log7x的图象的交点个数为( )A.3B.4C.5D.6【解析】选D.由f(x+3)=f(x+1)⇒f(x+2)=f(x),可知函数的最小正周期为2,故f(1)=f(3)=f(5)=f(7)=1,当x∈[-1,1]时,函数f(x)=x2的值域为{y10、0≤y≤1},当x=7时,函数y=log7x的值为y=log77=1,故可知在区间(0,7]之间,两函数图象有6个交点.11.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.【解析】选B.设直线AB的方程为11、x=ny+m(如图),A(x1,y1),B(x2,y2),因为·=2,所以x1x2+y1y2=2.又=x1,=x2,所以y1y2=-2.联立得y2-ny-m=0,所以y1y2=-m=-2,所以m=2,即点M(2,0).又S△ABO=S△AMO+S△BMO=12、OM13、14、y115、+16、OM17、18、y219、=y1-y2,S△AFO=20、OF21、·22、y123、=y1,所以S△ABO+S△AFO=y1-y2+y1=y1+≥2=3,当且仅当y1=时,等号成立.12.已知三个数a-1,a+1,a+5成
8、析】选C.由三视图知,几何体为圆柱的一部分,且圆柱的高为3,底面圆的半径为2,底面扇形的圆心角为,所以几何体的体积V=π×22×3=2π.9.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为( )A.(x-1)2+(y-1)2=5B.(x+1)2+(y+1)2=5C.(x-1)2+y2=5D.x2+(y-1)2=5【解析】选A.圆心到这两条直线的距离相等d==,解得a=1,d=,所以圆的标准方程为(x-1)2+(y-1)2=5.10.已知函数y=f(x)(x∈R)满足f(x+3)=f(x+1)且当x∈[-1,1]时,f(x)=x2,则y=
9、f(x)与y=log7x的图象的交点个数为( )A.3B.4C.5D.6【解析】选D.由f(x+3)=f(x+1)⇒f(x+2)=f(x),可知函数的最小正周期为2,故f(1)=f(3)=f(5)=f(7)=1,当x∈[-1,1]时,函数f(x)=x2的值域为{y
10、0≤y≤1},当x=7时,函数y=log7x的值为y=log77=1,故可知在区间(0,7]之间,两函数图象有6个交点.11.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.【解析】选B.设直线AB的方程为
11、x=ny+m(如图),A(x1,y1),B(x2,y2),因为·=2,所以x1x2+y1y2=2.又=x1,=x2,所以y1y2=-2.联立得y2-ny-m=0,所以y1y2=-m=-2,所以m=2,即点M(2,0).又S△ABO=S△AMO+S△BMO=
12、OM
13、
14、y1
15、+
16、OM
17、
18、y2
19、=y1-y2,S△AFO=
20、OF
21、·
22、y1
23、=y1,所以S△ABO+S△AFO=y1-y2+y1=y1+≥2=3,当且仅当y1=时,等号成立.12.已知三个数a-1,a+1,a+5成
此文档下载收益归作者所有