欢迎来到天天文库
浏览记录
ID:29032637
大小:271.00 KB
页数:18页
时间:2018-12-16
《2017年中考数学专题练习 二次根式及一元二次方程(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《二次根式及一元二次方程》一、选择题1.估算的值( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.要使+有意义,则x应满足( )A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是( )A.abB.C.a+bD.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是( )A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.武汉市2016年国内生产总值(GDP)比2015年
2、增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是( )A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足( )A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为( )A.2014B.2017C.201
3、5D.20169.方程(x﹣3)(x+1)=x﹣3的解是( )A.x=0B.x=3C.x=3或x=﹣1D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12B.12或15C.15D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a=cB.a=bC.b=cD.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中
4、点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为( )A.12B.9C.6D.4 二、填空题13.化简= .14.计算的结果是 .15.计算:+= .16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是 .17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为 .18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 .19.请你写出一个有一根为1的一元二次方程: .(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的
5、两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是 .21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= .22.将根号外面的因式移进根号后等于 .23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 ;点E的坐标为 . 三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=
6、,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值. 《二次根式及一元二次方程》参考答案与试题解析 一、选择题1.估算的值( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】
7、首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的范围,再估算的范围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分. 2.要使+有意义,则x应满足( )A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意
此文档下载收益归作者所有