动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc

动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc

ID:29005489

大小:469.50 KB

页数:8页

时间:2018-12-15

动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc_第1页
动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc_第2页
动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc_第3页
动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc_第4页
动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc_第5页
资源描述:

《动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?(第21题)解:(1)△BPQ是等边三角形,当t=2时,AP=2×1=2,

2、BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ是等边三角形.(2)过Q作QE⊥AB,垂足为E,由QB=2y,得QE=2t·sin600=t,由AP=t,得PB=6-t,所以S△BPQ=×BP×QE=(6-t)×t=-t2+3t;(3)因为QR∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600,所以△QRC是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ·cos600=×2t=t,所以EP=AB-AP-BE=6

3、-t-t=6-2t,所以EP∥QR,EP=QR,所以四边形EPRQ是平行四边形,所以PR=EQ=t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR~△PRQ,所以∠QPR=∠A=600,所以tan600=,即,所以t=,所以当t=时,△APR~△PRQ(第28题)ABCDOy/km90012x/h42、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之

4、间的距离为km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解:(1)900;(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程

5、之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为.设线段所表示的与之间的函数关系式为,把,代入得解得所以,线段所表示的与之间的函数关系式为.自变量的取值范围是.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把代入,得.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快

6、车比第一列快车晚出发0.75h.10分3、如图,已知的半径为6cm,射线经过点,,射线与相切于点.两点同时从点出发,点以5cm/s的速度沿射线方向运动,点以4cm/s的速度沿射线方向运动.设运动时间为s.ABQOPNM(1)求的长;(2)当为何值时,直线与相切?解:(1)连接.与相切于点,,即.,,.(2)过点作,垂足为.点的运动速度为5cm/s,点的运动速度为4cm/s,运动时间为s,,.,,.,..,四边形为矩形.图1ABQOPNMC.的半径为6,时,直线与相切.①当运动到如图1所示的位置..由,

7、得.解得.②当运动到如图2所示的位置.图2ABQOPNMC.由,得.解得.所以,当为0.5s或3.5s时直线与相切.4、已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.yO·ADxBCENM·(3)设直线AM、BM分别与y轴相交于P、Q两点,且

8、MA=pMP,MB=qMQ,求p-q的值.解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2).从而.(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,∴,B(-2m,-),C(-2m,-n),E(-m,-n).S矩形DCNO,S△DBO=,S△OEN=,∴S四边形OBCE=S矩形DCNO-S△DBO-S△OEN=k.∴.由直线及双曲线,得A(4,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。