2019届高考数学一轮复习选考部分不等式选讲学案理

2019届高考数学一轮复习选考部分不等式选讲学案理

ID:28992352

大小:582.00 KB

页数:22页

时间:2018-12-15

2019届高考数学一轮复习选考部分不等式选讲学案理_第1页
2019届高考数学一轮复习选考部分不等式选讲学案理_第2页
2019届高考数学一轮复习选考部分不等式选讲学案理_第3页
2019届高考数学一轮复习选考部分不等式选讲学案理_第4页
2019届高考数学一轮复习选考部分不等式选讲学案理_第5页
资源描述:

《2019届高考数学一轮复习选考部分不等式选讲学案理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、不等式选讲第一节绝对值不等式1.绝对值三角不等式定理1:如果a,b是实数,则

2、a+b

3、≤

4、a

5、+

6、b

7、,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么

8、a-c

9、≤

10、a-b

11、+

12、b-c

13、,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值不等式

14、x

15、

16、x

17、>a的解法:不等式a>0a=0a<0

18、x

19、

20、x

21、>a(2)

22、ax+b

23、≤c(c>0)和

24、ax+b

25、≥c(c>0)型不等式的解法:①

26、ax+b

27、≤c⇔-c≤ax+b≤c;②

28、ax+b

29、≥c⇔ax+b≥c或ax+b≤-c.1.设a,b为满足a

30、b<0的实数,那么(  )A.

31、a+b

32、>

33、a-b

34、     B.

35、a+b

36、<

37、a-b

38、C.

39、a-b

40、<

41、

42、a

43、-

44、b

45、

46、D.

47、a-b

48、<

49、a

50、+

51、b

52、解析:选B ∵ab<0,∴

53、a-b

54、=

55、a

56、+

57、b

58、>

59、a+b

60、.2.若不等式

61、kx-4

62、≤2的解集为,则实数k=________.解析:由

63、kx-4

64、≤2⇔2≤kx≤6.∵不等式的解集为,∴k=2.答案:23.函数y=

65、x-4

66、+

67、x+4

68、的最小值为________.解析:因为

69、x-4

70、+

71、x+4

72、≥

73、(x-4)-(x+4)

74、=8,所以所求函数的最小值为8.答案:84.不等式

75、x+1

76、-

77、x-2

78、≥

79、1的解集是________.解析:令f(x)=

80、x+1

81、-

82、x-2

83、=当-11恒成立.所以不等式的解集为.答案:    [考什么·怎么考]绝对值不等式的解法是每年高考的重点,既单独考查,也与函数的图象、含参问题等的综合考查,难度较小,属于低档题.1.(2016·全国卷Ⅰ)已知函数f(x)=

84、x+1

85、-

86、2x-3

87、.(1)画出y=f(x)的图象;(2)求不等式

88、f(x)

89、>1的解集.解:(1)由题意得f(x)=故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当

90、f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5.故f(x)>1的解集为{x

91、1

92、f(x)

93、>1的解集为.2.解下列不等式.(1)

94、2x+1

95、-2

96、x-1

97、>0;(2)

98、x+3

99、-

100、2x-1

101、<+1.解:(1)法一:原不等式可化为

102、2x+1

103、>2

104、x-1

105、,两边平方得4x2+4x+1>4(x2-2x+1),解得x>,所以原不等式的解集为.法二:原不等式等价于或或解得x>,所以原不等式的解集为.(2)①当x<-3时,原不等式化为-(x+3)-(1-2x)<+1,解得x<10,∴x<-3.②

106、当-3≤x≤时,原不等式化为(x+3)-(1-2x)<+1,解得x<-,∴-3≤x<-.③当x>时,原不等式化为(x+3)+(1-2x)<+1,解得x>2,∴x>2.综上可知,原不等式的解集为.[怎样快解·准解]绝对值不等式的常见3解法(1)零点分段讨论法含有两个或两个以上绝对值符号的不等式,可用零点分段讨论法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组),一般步骤如下:①令每个绝对值符号里的代数式为零,并求出相应的根;②将这些根按从小到大排序,它们把实数集分为若干个区间;③在所分的各区间上,根据绝对值的定义去掉绝对值符号,求所得的

107、各不等式在相应区间上的解集;④这些解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于

108、x-a

109、+

110、x-b

111、与

112、x-a

113、-

114、x-b

115、分别表示数轴上与x对应的点到与a,b对应的点的距离之和与距离之差,因此对形如

116、x-a

117、+

118、x-b

119、0)或

120、x-a

121、-

122、x-b

123、>c(c>0)的不等式,利用绝对值的几何意义求解更直观.(3)数形结合法在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[易错提醒] 用零点分段法和几何意义求解绝对值不等式时,去绝对值符号的关键点是找零点,将数轴分成若干段,然后从左到右逐段讨论.    [典

124、题领悟]1.若对于实数x,y有

125、1-x

126、≤2,

127、y+1

128、≤1,求

129、2x+3y+1

130、的最大值.解:因为

131、2x+3y+1

132、=

133、2(x-1)+3(y+1)

134、≤2

135、x-1

136、+3

137、y+1

138、≤7,所以

139、2x+3y+1

140、的最大值为7.2.若a≥2,x∈R,求证:

141、x-1+a

142、+

143、x-a

144、≥3.证明:因为

145、x-1+a

146、+

147、x-a

148、≥

149、(x-1+a)-(x-a)

150、=

151、2a-1

152、,又a≥2,故

153、2a-1

154、≥3,所以

155、x-1+a

156、+

157、x-a

158、≥3成立.[解题师说]证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为一般不等式再证明.(2)利用三角不等

159、式

160、

161、a

162、-

163、b

164、

165、≤

166、a±b

167、≤

168、a

169、+

170、b

171、进行证明.(3)转化为函数问题,利用数形结合进行证明.[冲关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。