资源描述:
《(浙江专版)2019版高考数学一轮复习第八章立体几何8.2空间点线面的位置关系学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§8.2 空间点、线、面的位置关系考纲解读考点考纲内容要求浙江省五年高考统计20132014201520162017空间点、线、面的位置关系1.理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.2.理解两条异面直线所成角
2、的概念.理解10,5分4(文),5分17,4分6(文),5分4(文),5分13,4分14,4分2,5分2(文),5分9,4分分析解读 1.以几何体为依托考查空间点、线、面的位置关系,空间异面直线的判定.2.以棱柱、棱锥为依托考查两条异面直线所成角.3.预计2019年高考中,空间点、线、面的位置关系,异面直线所成角仍是考查重点.五年高考考点 空间点、线、面的位置关系 1.(2016浙江,2,5分)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( ) A.m∥lB.m∥nC.n
3、⊥lD.m⊥n答案 C2.(2015浙江文,4,5分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m答案 A3.(2013浙江,10,5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( ) A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平
4、面α与平面β所成的(锐)二面角为60°答案 A4.(2013浙江文,4,5分)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C5.(2016课标全国Ⅰ,11,5分)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.B.C.D.答案 A6.(2015广东,8,5分)若空间中n个不同的点两两距离都相等,则正整数n的取值( )
5、 A.至多等于3B.至多等于4C.等于5D.大于5答案 B7.(2015福建,7,5分)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B8.(2014辽宁,4,5分)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案 B9.(2017课标全国Ⅲ理,16,5分)a,b为空间中两条互相垂直的直线,等
6、腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是 .(填写所有正确结论的编号) 答案 ②③教师用书专用(10—13)10.(2013课标全国Ⅱ,4,5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相
7、交,且交线平行于l答案 D 11.(2013广东,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D 12.(2013江西,8,5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11答案 A 13.(2013上海春招,9,3分