第3章空间向量与立体几何§3.2立体几何中的向量方法

第3章空间向量与立体几何§3.2立体几何中的向量方法

ID:28984338

大小:503.00 KB

页数:12页

时间:2018-12-15

第3章空间向量与立体几何§3.2立体几何中的向量方法_第1页
第3章空间向量与立体几何§3.2立体几何中的向量方法_第2页
第3章空间向量与立体几何§3.2立体几何中的向量方法_第3页
第3章空间向量与立体几何§3.2立体几何中的向量方法_第4页
第3章空间向量与立体几何§3.2立体几何中的向量方法_第5页
资源描述:

《第3章空间向量与立体几何§3.2立体几何中的向量方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§3.2立体几何中的向量方法知识点一用向量方法判定线面位置关系 (1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),

2、a=(0,-8,12).解 (1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=

3、(0,-8,12),∴u=-a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明 方法一 如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则可求得M(0,1,),N(,1,1),D(0,0,0),A1(1,0,1),B(1,1,0),于是=(,0,),设平面A1BD的法向量是n=(x,y,z).n=(x,y,z).则n·=0,得

4、取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又·n=(,0,)·(1,-1,-1)=0,方法二∵=∴∥,又∵MN⊄平面A1BD.∴MN∥平面A1BD.知识点三利用向量方法证明垂直问题 在正棱锥P—ABC中,三条侧棱两两互相垂直,G是△PAB的重心,E、F分别为BC、PB上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF⊥平面PBC;(2)求证:EG是PG与BC的公垂线段.证明 (1)方法一 如图所示,以三棱锥的顶点P为原点,以PA、PB、PC所在直线分别为x轴、y轴、z轴建立空间

5、直角坐标系.令PA=PB=PC=3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0).于是=(3,0,0),=(3,0,0),故=3,∴PA∥FG.而PA⊥平面PBC,∴FG⊥平面PBC,又FG⊂平面EFG,∴平面EFG⊥平面PBC.方法二同方法一,建立空间直角坐标系,则E(0,2,1)、F(0,1,0)、G(1,1,0).=(0,-1,-1),=(0,-1,-1),设平面EFG的法向量是n=(x,y,z),则有n⊥,n⊥,∴令y=

6、1,得z=-1,x=0,即n=(0,1,-1).而显然=(3,0,0)是平面PBC的一个法向量.这样n·=0,∴n⊥即平面PBC的法向量与平面EFG的法向量互相垂直,∴平面EFG⊥平面PBC.(2)∵=(1,1,1),=(1,1,0),=(0,3,3),∴·=11=0,·=33=0,∴EG⊥PG,EG⊥BC,∴EG是PG与BC的公垂线段.知识点四利用向量方法求角 四棱锥P—ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,

7、CD=1,AD=2.(1)建立适当的坐标系,并写出点B,P的坐标;(2)求异面直线PA与BC所成角的余弦值.解 (1)如图所示,以D为原点,射线DA,DC,DP分别为x轴,y轴,z轴的正方向,建立空间直角坐标系D—xyz,∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,∴A(2,0,0),C(0,1,0),B(2,4,0).由PD⊥面ABCD得∠PAD为PA与平面ABCD所成的角.∴∠PAD=60°.在Rt△PAD中,由AD=2,得PD=2.∴P(0,0,2).(2)∵=(2,0,-2),=(2,3,

8、0)∴cos〈,〉=∴PA与BC所成角的余弦值为. 正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA与平面MNB所成二面角的余弦值.解 取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=,,设〈,〉=θ,2=2+2·+2,∴1=()2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。